3 resultados para microinjection
em Duke University
Resumo:
A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in beta-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.
Resumo:
Guanine nucleotide-binding regulatory protein (G protein)-coupled receptor kinases (GRKs) constitute a family of serine/threonine kinases that play a major role in the agonist-induced phosphorylation and desensitization of G-protein-coupled receptors. Herein we describe the generation of monoclonal antibodies (mAbs) that specifically react with GRK2 and GRK3 or with GRK4, GRK5, and GRK6. They are used in several different receptor systems to identify the kinases that are responsible for receptor phosphorylation and desensitization. The ability of these reagents to inhibit GRK- mediated receptor phosphorylation is demonstrated in permeabilized 293 cells that overexpress individual GRKs and the type 1A angiotensin II receptor. We also use this approach to identify the endogenous GRKs that are responsible for the agonist-induced phosphorylation of epitope-tagged beta2- adrenergic receptors (beta2ARs) overexpressed in rabbit ventricular myocytes that are infected with a recombinant adenovirus. In these myocytes, anti-GRK2/3 mAbs inhibit isoproterenol-induced receptor phosphorylation by 77%, while GRK4-6-specific mAbs have no effect. Consistent with the operation of a betaAR kinase-mediated mechanism, GRK2 is identified by immunoblot analysis as well as in a functional assay as the predominant GRK expressed in these cells. Microinjection of GRK2/3-specific mAbs into chicken sensory neurons, which have been shown to express a GRK3-like protein, abolishes desensitization of the alpha2AR-mediated calcium current inhibition. The intracellular inhibition of endogenous GRKs by mAbs represents a novel approach to the study of receptor specificities among GRKs that should be widely applicable to many G-protein-coupled receptors.
Resumo:
Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.