9 resultados para metallic scales

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to analyze three-dimensional dispersive metallic photonic crystals (PCs) and to find a structure that can provide a bandgap and a high cutoff frequency. The determination of the band structure of a PC with dispersive materials is an expensive nonlinear eigenvalue problem; in this work we propose a rational-polynomial method to convert such a nonlinear eigenvalue problem into a linear eigenvalue problem. The spectral element method is extended to rapidly calculate the band structure of three-dimensional PCs consisting of realistic dispersive materials modeled by Drude and Drude-Lorentz models. Exponential convergence is observed in the numerical experiments. Numerical results show that, at the low frequency limit, metallic materials are similar to a perfect electric conductor, where the simulation results tend to be the same as perfect electric conductor PCs. Band structures of the scaffold structure and semi-woodpile structure metallic PCs are investigated. It is found that band structures of semi-woodpile PCs have a very high cutoff frequency as well as a bandgap between the lowest two bands and the higher bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. RESULTS: We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. CONCLUSIONS: The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Malignant ureteral obstruction often necessitates chronic urinary diversion and is associated with high rates of failure with traditional ureteral stents. We evaluated the outcomes of a metallic stent placed for malignant ureteral obstruction and determined the impact of risk factors previously associated with increased failure rates of traditional stents. MATERIALS AND METHODS: Patients undergoing placement of the metallic Resonance® stent for malignant ureteral obstruction at an academic referral center were identified retrospectively. Stent failure was defined as unplanned stent exchange or nephrostomy tube placement for signs or symptoms of recurrent ureteral obstruction (recurrent hydroureteronephrosis or increasing creatinine). Predictors of time to stent failure were assessed using Cox regression. RESULTS: A total of 37 stents were placed in 25 patients with malignant ureteral obstruction. Of these stents 12 (35%) were identified to fail. Progressive hydroureteronephrosis and increasing creatinine were the most common signs of stent failure. Three failed stents had migrated distally and no stents required removal for recurrent infection. Patients with evidence of prostate cancer invading the bladder at stent placement were found to have a significantly increased risk of failure (HR 6.50, 95% CI 1.45-29.20, p = 0.015). Notably symptomatic subcapsular hematomas were identified in 3 patients after metallic stent placement. CONCLUSIONS: Failure rates with a metallic stent are similar to those historically observed with traditional polyurethane based stents in malignant ureteral obstruction. The invasion of prostate cancer in the bladder significantly increases the risk of failure. Patients should be counseled and observed for subcapsular hematoma formation with this device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrosystems ecology is the study of diverse ecological phenomena at the scale of regions to continents and their interactions with phenomena at other scales. This emerging subdiscipline addresses ecological questions and environmental problems at these broad scales. Here, we describe this new field, show how it relates to modern ecological study, and highlight opportunities that stem from taking a macrosystems perspective. We present a hierarchical framework for investigating macrosystems at any level of ecological organization and in relation to broader and finer scales. Building on well-established theory and concepts from other subdisciplines of ecology, we identify feedbacks, linkages among distant regions, and interactions that cross scales of space and time as the most likely sources of unexpected and novel behaviors in macrosystems. We present three examples that highlight the importance of this multiscaled systems perspective for understanding the ecology of regions to continents. © The Ecological Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If you walk on sand, it supports your weight. How do the disordered forces between particles in sand organize, to keep you from sinking? This simple question is surprisingly difficult to answer experimentally: measuring forces in three dimensions, between deeply buried grains, is challenging. Here we describe experiments in which we have succeeded in measuring forces inside a granular packing subject to controlled deformations. We connect the measured micro-scale forces to the macro-scale packing force response with an averaging, mean field calculation. This calculation explains how the combination of packing structure and contact deformations produce the observed nontrivial mechanical response of the packing, revealing a surprising microscopic particle deformation enhancement mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spiking activity of nearby cortical neurons is correlated on both short and long time scales. Understanding this shared variability in firing patterns is critical for appreciating the representation of sensory stimuli in ensembles of neurons, the coincident influences of neurons on common targets, and the functional implications of microcircuitry. Our knowledge about neuronal correlations, however, derives largely from experiments that used different recording methods, analysis techniques, and cortical regions. Here we studied the structure of neuronal correlation in area V4 of alert macaques using recording and analysis procedures designed to match those used previously in primary visual cortex (V1), the major input to V4. We found that the spatial and temporal properties of correlations in V4 were remarkably similar to those of V1, with two notable differences: correlated variability in V4 was approximately one-third the magnitude of that in V1 and synchrony in V4 was less temporally precise than in V1. In both areas, spontaneous activity (measured during fixation while viewing a blank screen) was approximately twice as correlated as visual-evoked activity. The results provide a foundation for understanding how the structure of neuronal correlation differs among brain regions and stages in cortical processing and suggest that it is likely governed by features of neuronal circuits that are shared across the visual cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare the performance of formal prognostic instruments vs subjective clinical judgment with regards to predicting functional outcome in patients with spontaneous intracerebral hemorrhage (ICH). METHODS: This prospective observational study enrolled 121 ICH patients hospitalized at 5 US tertiary care centers. Within 24 hours of each patient's admission to the hospital, one physician and one nurse on each patient's clinical team were each asked to predict the patient's modified Rankin Scale (mRS) score at 3 months and to indicate whether he or she would recommend comfort measures. The admission ICH score and FUNC score, 2 prognostic scales selected for their common use in neurologic practice, were calculated for each patient. Spearman rank correlation coefficients (r) with respect to patients' actual 3-month mRS for the physician and nursing predictions were compared against the same correlation coefficients for the ICH score and FUNC score. RESULTS: The absolute value of the correlation coefficient for physician predictions with respect to actual outcome (0.75) was higher than that of either the ICH score (0.62, p = 0.057) or the FUNC score (0.56, p = 0.01). The nursing predictions of outcome (r = 0.72) also trended towards an accuracy advantage over the ICH score (p = 0.09) and FUNC score (p = 0.03). In an analysis that excluded patients for whom comfort care was recommended, the 65 available attending physician predictions retained greater accuracy (r = 0.73) than either the ICH score (r = 0.50, p = 0.02) or the FUNC score (r = 0.42, p = 0.004). CONCLUSIONS: Early subjective clinical judgment of physicians correlates more closely with 3-month outcome after ICH than prognostic scales.