4 resultados para mesh: Neuroscience
em Duke University
Resumo:
BACKGROUND: Variation in brain structure is both genetically and environmentally influenced. The question about potential differences in brain anatomy across populations of differing race and ethnicity remains a controversial issue. There are few studies specifically examining racial or ethnic differences and also few studies that test for race-related differences in context of other neuropsychiatric research, possibly due to the underrepresentation of ethnic minorities in clinical research. It is within this context that we conducted a secondary data analysis examining volumetric MRI data from healthy participants and compared the volumes of the amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebral volume between Caucasian and African-American participants. We discuss the importance of this finding in context of neuroimaging methodology, but also the need for improved recruitment of African Americans in clinical research and its broader implications for a better understanding of the neural basis of neuropsychiatric disorders. METHODOLOGY/PRINCIPAL FINDINGS: This was a case control study in the setting of an academic medical center outpatient service. Participants consisted of 44 Caucasians and 33 ethnic minorities. The following volumetric data were obtained: amygdala, hippocampus, lateral ventricles, caudate nucleus, orbitofrontal cortex (OFC) and total cerebrum. Each participant completed a 1.5 T magnetic resonance imaging (MRI). Our primary finding in analyses of brain subregions was that when compared to Caucasians, African Americans exhibited larger left OFC volumes (F (1,68) = 7.50, p = 0.008). CONCLUSIONS: The biological implications of our findings are unclear as we do not know what factors may be contributing to these observed differences. However, this study raises several questions that have important implications for the future of neuropsychiatric research.
Resumo:
We expect scientists to follow a code of honor and conduct and to report their research honestly and accurately, but so-called scientific misconduct, which includes plagiarism, faked data, and altered images, has led to a tenfold increase in the number of retractions over the past decade. Among the reasons for this troubling upsurge is increased competition for journal placement, grant money, and prestigious appointments. The solutions are not easy, but reform and greater vigilance is needed.
Resumo:
Cognitive neuroscience, as a discipline, links the biological systems studied by neuroscience to the processing constructs studied by psychology. By mapping these relations throughout the literature of cognitive neuroscience, we visualize the semantic structure of the discipline and point to directions for future research that will advance its integrative goal. For this purpose, network text analyses were applied to an exhaustive corpus of abstracts collected from five major journals over a 30-month period, including every study that used fMRI to investigate psychological processes. From this, we generate network maps that illustrate the relationships among psychological and anatomical terms, along with centrality statistics that guide inferences about network structure. Three terms--prefrontal cortex, amygdala, and anterior cingulate cortex--dominate the network structure with their high frequency in the literature and the density of their connections with other neuroanatomical terms. From network statistics, we identify terms that are understudied compared with their importance in the network (e.g., insula and thalamus), are underspecified in the language of the discipline (e.g., terms associated with executive function), or are imperfectly integrated with other concepts (e.g., subdisciplines like decision neuroscience that are disconnected from the main network). Taking these results as the basis for prescriptive recommendations, we conclude that semantic analyses provide useful guidance for cognitive neuroscience as a discipline, both by illustrating systematic biases in the conduct and presentation of research and by identifying directions that may be most productive for future research.