4 resultados para medical outcomes

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Coronary artery bypass grafting (CABG) is often used to treat patients with significant coronary heart disease (CHD). To date, multiple longitudinal and cross-sectional studies have examined the association between depression and CABG outcomes. Although this relationship is well established, the mechanism underlying this relationship remains unclear. The purpose of this study was twofold. First, we compared three markers of autonomic nervous system (ANS) function in four groups of patients: 1) Patients with coronary heart disease and depression (CHD/Dep), 2) Patients without CHD but with depression (NonCHD/Dep), 3) Patients with CHD but without depression (CHD/NonDep), and 4) Patients without CHD and depression (NonCHD/NonDep). Second, we investigated the impact of depression and autonomic nervous system activity on CABG outcomes. METHODS: Patients were screened to determine whether they met some of the study's inclusion or exclusion criteria. ANS function (i.e., heart rate, heart rate variability, and plasma norepinephrine levels) were measured. Chi-square and one-way analysis of variance were performed to evaluate group differences across demographic, medical variables, and indicators of ANS function. Logistic regression and multiple regression analyses were used to assess impact of depression and autonomic nervous system activity on CABG outcomes. RESULTS: The results of the study provide some support to suggest that depressed patients with CHD have greater ANS dysregulation compared to those with only CHD or depression. Furthermore, independent predictors of in-hospital length of stay and non-routine discharge included having a diagnosis of depression and CHD, elevated heart rate, and low heart rate variability. CONCLUSIONS: The current study presents evidence to support the hypothesis that ANS dysregulation might be one of the underlying mechanisms that links depression to cardiovascular CABG surgery outcomes. Thus, future studies should focus on developing and testing interventions that targets modifying ANS dysregulation, which may lead to improved patient outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The outcomes for both (i) radiation therapy and (ii) preclinical small animal radio- biology studies are dependent on the delivery of a known quantity of radiation to a specific and intentional location. Adverse effects can result from these procedures if the dose to the target is too high or low, and can also result from an incorrect spatial distribution in which nearby normal healthy tissue can be undesirably damaged by poor radiation delivery techniques. Thus, in mice and humans alike, the spatial dose distributions from radiation sources should be well characterized in terms of the absolute dose quantity, and with pin-point accuracy. When dealing with the steep spatial dose gradients consequential to either (i) high dose rate (HDR) brachytherapy or (ii) within the small organs and tissue inhomogeneities of mice, obtaining accurate and highly precise dose results can be very challenging, considering commercially available radiation detection tools, such as ion chambers, are often too large for in-vivo use.

In this dissertation two tools are developed and applied for both clinical and preclinical radiation measurement. The first tool is a novel radiation detector for acquiring physical measurements, fabricated from an inorganic nano-crystalline scintillator that has been fixed on an optical fiber terminus. This dosimeter allows for the measurement of point doses to sub-millimeter resolution, and has the ability to be placed in-vivo in humans and small animals. Real-time data is displayed to the user to provide instant quality assurance and dose-rate information. The second tool utilizes an open source Monte Carlo particle transport code, and was applied for small animal dosimetry studies to calculate organ doses and recommend new techniques of dose prescription in mice, as well as to characterize dose to the murine bone marrow compartment with micron-scale resolution.

Hardware design changes were implemented to reduce the overall fiber diameter to <0.9 mm for the nano-crystalline scintillator based fiber optic detector (NanoFOD) system. Lower limits of device sensitivity were found to be approximately 0.05 cGy/s. Herein, this detector was demonstrated to perform quality assurance of clinical 192Ir HDR brachytherapy procedures, providing comparable dose measurements as thermo-luminescent dosimeters and accuracy within 20% of the treatment planning software (TPS) for 27 treatments conducted, with an inter-quartile range ratio to the TPS dose value of (1.02-0.94=0.08). After removing contaminant signals (Cerenkov and diode background), calibration of the detector enabled accurate dose measurements for vaginal applicator brachytherapy procedures. For 192Ir use, energy response changed by a factor of 2.25 over the SDD values of 3 to 9 cm; however a cap made of 0.2 mm thickness silver reduced energy dependence to a factor of 1.25 over the same SDD range, but had the consequence of reducing overall sensitivity by 33%.

For preclinical measurements, dose accuracy of the NanoFOD was within 1.3% of MOSFET measured dose values in a cylindrical mouse phantom at 225 kV for x-ray irradiation at angles of 0, 90, 180, and 270˝. The NanoFOD exhibited small changes in angular sensitivity, with a coefficient of variation (COV) of 3.6% at 120 kV and 1% at 225 kV. When the NanoFOD was placed alongside a MOSFET in the liver of a sacrificed mouse and treatment was delivered at 225 kV with 0.3 mm Cu filter, the dose difference was only 1.09% with use of the 4x4 cm collimator, and -0.03% with no collimation. Additionally, the NanoFOD utilized a scintillator of 11 µm thickness to measure small x-ray fields for microbeam radiation therapy (MRT) applications, and achieved 2.7% dose accuracy of the microbeam peak in comparison to radiochromic film. Modest differences between the full-width at half maximum measured lateral dimension of the MRT system were observed between the NanoFOD (420 µm) and radiochromic film (320 µm), but these differences have been explained mostly as an artifact due to the geometry used and volumetric effects in the scintillator material. Characterization of the energy dependence for the yttrium-oxide based scintillator material was performed in the range of 40-320 kV (2 mm Al filtration), and the maximum device sensitivity was achieved at 100 kV. Tissue maximum ratio data measurements were carried out on a small animal x-ray irradiator system at 320 kV and demonstrated an average difference of 0.9% as compared to a MOSFET dosimeter in the range of 2.5 to 33 cm depth in tissue equivalent plastic blocks. Irradiation of the NanoFOD fiber and scintillator material on a 137Cs gamma irradiator to 1600 Gy did not produce any measurable change in light output, suggesting that the NanoFOD system may be re-used without the need for replacement or recalibration over its lifetime.

For small animal irradiator systems, researchers can deliver a given dose to a target organ by controlling exposure time. Currently, researchers calculate this exposure time by dividing the total dose that they wish to deliver by a single provided dose rate value. This method is independent of the target organ. Studies conducted here used Monte Carlo particle transport codes to justify a new method of dose prescription in mice, that considers organ specific doses. Monte Carlo simulations were performed in the Geant4 Application for Tomographic Emission (GATE) toolkit using a MOBY mouse whole-body phantom. The non-homogeneous phantom was comprised of 256x256x800 voxels of size 0.145x0.145x0.145 mm3. Differences of up to 20-30% in dose to soft-tissue target organs was demonstrated, and methods for alleviating these errors were suggested during whole body radiation of mice by utilizing organ specific and x-ray tube filter specific dose rates for all irradiations.

Monte Carlo analysis was used on 1 µm resolution CT images of a mouse femur and a mouse vertebra to calculate the dose gradients within the bone marrow (BM) compartment of mice based on different radiation beam qualities relevant to x-ray and isotope type irradiators. Results and findings indicated that soft x-ray beams (160 kV at 0.62 mm Cu HVL and 320 kV at 1 mm Cu HVL) lead to substantially higher dose to BM within close proximity to mineral bone (within about 60 µm) as compared to hard x-ray beams (320 kV at 4 mm Cu HVL) and isotope based gamma irradiators (137Cs). The average dose increases to the BM in the vertebra for these four aforementioned radiation beam qualities were found to be 31%, 17%, 8%, and 1%, respectively. Both in-vitro and in-vivo experimental studies confirmed these simulation results, demonstrating that the 320 kV, 1 mm Cu HVL beam caused statistically significant increased killing to the BM cells at 6 Gy dose levels in comparison to both the 320 kV, 4 mm Cu HVL and the 662 keV, 137Cs beams.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Utilization of cardiac services varies across regions and hospitals, yet little is known regarding variation in the intensity of outpatient cardiac care across cardiology physician practices or the association with clinical endpoints, an area of potential importance to promote efficient care. METHODS AND RESULTS: We included 7 160 732 Medicare beneficiaries who received services from 5635 cardiology practices in 2012. Beneficiaries were assigned to practices providing the plurality of office visits, and practices were ranked and assigned to quartiles using the ratio of observed to predicted annual payments per beneficiary for common cardiac services (outpatient intensity index). The median (interquartile range) outpatient intensity index was 1.00 (0.81-1.24). Mean payments for beneficiaries attributed to practices in the highest (Q4) and lowest (Q1) quartile of outpatient intensity were: all cardiac payments (Q4 $1272 vs Q1 $581; ratio, 2.2); cardiac catheterization (Q4 $215 vs Q1 $64; ratio, 3.4); myocardial perfusion imaging (Q4 $253 vs Q1 $83; ratio, 3.0); and electrophysiology device procedures (Q4 $353 vs Q1 $142; ratio, 2.5). The adjusted odds ratios (95% CI) for 1 incremental quartile of outpatient intensity for each outcome was: cardiac surgical/procedural hospitalization (1.09 [1.09, 1.10]); cardiac medical hospitalization (1.00 [0.99, 1.00]); noncardiac hospitalization (0.99 [0.99, 0.99]); and death at 1 year (1.00 [0.99, 1.00]). CONCLUSION: Substantial variation in the intensity of outpatient care exists at the cardiology practice level, and higher intensity is not associated with reduced mortality or hospitalizations. Outpatient cardiac care is a potentially important target for efforts to improve efficiency in the Medicare population.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conflicts of interests have long been recognized as potential sources of influence in the conduct and reporting of clinical trials. This controversy was again rekindled after the publication of the latest statin guidelines and a series of studies regarding competing interests in leading medical journals. We investigate the association between declared author conflicts and the outcomes of large cardiovascular trials. We searched the Medline (PubMed) database to identify "phase 2" and "phase 3" clinical trials using the search term "cardiovascular" over the past decade using "10 years" as the filter. We perceived the competing interest as present regardless of the nature such as consulting fees, honoraria, travel imbursements, stock holding, and employment. Of the 699 titles retrieved, 114 studies met the inclusion criteria. Nearly 80% of studies had at least a single author with competing interests. The 114 studies had a total of 1,433 investigators, of which 725 had declared conflicts of interests (50.6%). A total of 66 studies (58%) had half or >50 percent of investigators who had some conflicts of interests. Of these studies, 54 studies had favorable outcomes and only 12 had unfavorable outcomes (p <0.001). Among the type of competing interests, consulting or personal fees was the most common present in 58 investigators (51%). This was followed by research grants present in 55 the researchers (48%). Among 25 (22%) studies, at least one investigator reported stakes in the industry, of which only 2 studies had unfavorable outcomes for the intervention being investigated. Just 1 of the 25 clinical trials with a sample size of >1,000 had no investigators with competing interests. In conclusion, authors conflicts are associated with favorable outcomes in cardiovascular outcome trials.