2 resultados para material flow calculation
em Duke University
Resumo:
In some supply chains, materials are ordered periodically according to local information. This paper investigates how to improve the performance of such a supply chain. Specifically, we consider a serial inventory system in which each stage implements a local reorder interval policy; i.e., each stage orders up to a local basestock level according to a fixed-interval schedule. A fixed cost is incurred for placing an order. Two improvement strategies are considered: (1) expanding the information flow by acquiring real-time demand information and (2) accelerating the material flow via flexible deliveries. The first strategy leads to a reorder interval policy with full information; the second strategy leads to a reorder point policy with local information. Both policies have been studied in the literature. Thus, to assess the benefit of these strategies, we analyze the local reorder interval policy. We develop a bottom-up recursion to evaluate the system cost and provide a method to obtain the optimal policy. A numerical study shows the following: Increasing the flexibility of deliveries lowers costs more than does expanding information flow; the fixed order costs and the system lead times are key drivers that determine the effectiveness of these improvement strategies. In addition, we find that using optimal batch sizes in the reorder point policy and demand rate to infer reorder intervals may lead to significant cost inefficiency. © 2010 INFORMS.
Resumo:
The first calculation of triangular flow ν3 in Au+Au collisions at √sNN = 200A GeV from an event-by-event (3 + 1) d transport+hydrodynamics hybrid approach is presented. As a response to the initial triangularity Ie{cyrillic, ukrainian}3 of the collision zone, ν3 is computed in a similar way to the standard event-plane analysis for elliptic flow ν2. It is found that the triangular flow exhibits weak centrality dependence and is roughly equal to elliptic flow in most central collisions. We also explore the transverse momentum and rapidity dependence of ν2 and ν3 for charged particles as well as identified particles. We conclude that an event-by-event treatment of the ideal hydrodynamic evolution startingwith realistic initial conditions generates the main features expected for triangular flow. © 2010 The American Physical Society.