5 resultados para market information
em Duke University
Resumo:
Consistent with the implications from a simple asymmetric information model for the bid-ask spread, we present empirical evidence that the size of the bid-ask spread in the foreign exchange market is positively related to the underlying exchange rate uncertainty. The estimation results are based on an ordered probit analysis that captures the discreteness in the spread distribution, with the uncertainty of the spot exchange rate being quantified through a GARCH type model. The data sets consists of more than 300,000 continuously recorded Deutschemark/dollar quotes over the period from April 1989 to June 1989. © 1994.
Resumo:
Policy makers and analysts are often faced with situations where it is unclear whether market-based instruments hold real promise of reducing costs, relative to conventional uniform standards. We develop analytic expressions that can be employed with modest amounts of information to estimate the potential cost savings associated with market-based policies, with an application to the environmental policy realm. These simple formulae can identify instruments that merit more detailed investigation. We illustrate the use of these results with an application to nitrogen oxides control by electric utilities in the United States.
Resumo:
Market failures associated with environmental pollution interact with market failures associated with the innovation and diffusion of new technologies. These combined market failures provide a strong rationale for a portfolio of public policies that foster emissions reduction as well as the development and adoption of environmentally beneficial technology. Both theory and empirical evidence suggest that the rate and direction of technological advance is influenced by market and regulatory incentives, and can be cost-effectively harnessed through the use of economic-incentive based policy. In the presence of weak or nonexistent environmental policies, investments in the development and diffusion of new environmentally beneficial technologies are very likely to be less than would be socially desirable. Positive knowledge and adoption spillovers and information problems can further weaken innovation incentives. While environmental technology policy is fraught with difficulties, a long-term view suggests a strategy of experimenting with policy approaches and systematically evaluating their success. © 2005 Elsevier B.V. All rights reserved.
Resumo:
This paper analyzes a manager's optimal ex-ante reporting system using a Bayesian persuasion approach (Kamenica and Gentzkow (2011)) in a setting where investors affect cash flows through their decision to finance the firm's investment opportunities, possibly assisted by the costly acquisition of additional information (inspection). I examine how the informativeness and the bias of the optimal system are determined by investors' inspection cost, the degree of incentive alignment between the manager and the investor, and the prior belief that the project is profitable. I find that a mis-aligned manager's system is informative
only when the market prior is pessimistic and is always positively biased; this bias decreases as investors' inspection cost decreases. In contrast, a well-aligned manager's system is fully revealing when investors' inspection cost is high, and is counter-cyclical to the market belief when the inspection cost is low: It is positively (negatively) biased when the market belief is pessimistic (optimistic). Furthermore, I explore the extent to which the results generalize to a case with managerial manipulation and discuss the implications for investment efficiency. Overall, the analysis describes the complex interactions among determinants of firm disclosures and governance, and offers explanations for the mixed empirical results in this area.
Resumo:
I demonstrate a powerful tension between acquiring information and incorporating it into asset prices, the two core elements of price discovery. As a salient case, I focus on the transformative rise of algorithmic trading (AT) typically associated with improved price efficiency. Using a measure of the relative information content of prices and a comprehensive panel of 37,325 stock-quarters of SEC market data, I establish instead that algorithmic trading strongly decreases the net amount of information in prices. The increase in price distortions associated with the AT “information gap” is roughly $42.6 billion/year for U.S. common stocks around earnings announcement events alone. Information losses are concentrated among stocks with high shares of algorithmic liquidity takers relative to algorithmic liquidity makers, suggesting that aggressive AT powerfully deters fundamental information acquisition despite its importance for translating available information into prices.