2 resultados para lung development
em Duke University
Resumo:
Knowledge-based radiation treatment is an emerging concept in radiotherapy. It
mainly refers to the technique that can guide or automate treatment planning in
clinic by learning from prior knowledge. Dierent models are developed to realize
it, one of which is proposed by Yuan et al. at Duke for lung IMRT planning. This
model can automatically determine both beam conguration and optimization ob-
jectives with non-coplanar beams based on patient-specic anatomical information.
Although plans automatically generated by this model demonstrate equivalent or
better dosimetric quality compared to clinical approved plans, its validity and gener-
ality are limited due to the empirical assignment to a coecient called angle spread
constraint dened in the beam eciency index used for beam ranking. To eliminate
these limitations, a systematic study on this coecient is needed to acquire evidences
for its optimal value.
To achieve this purpose, eleven lung cancer patients with complex tumor shape
with non-coplanar beams adopted in clinical approved plans were retrospectively
studied in the frame of the automatic lung IMRT treatment algorithm. The primary
and boost plans used in three patients were treated as dierent cases due to the
dierent target size and shape. A total of 14 lung cases, thus, were re-planned using
the knowledge-based automatic lung IMRT planning algorithm by varying angle
spread constraint from 0 to 1 with increment of 0.2. A modied beam angle eciency
index used for navigate the beam selection was adopted. Great eorts were made to assure the quality of plans associated to every angle spread constraint as good
as possible. Important dosimetric parameters for PTV and OARs, quantitatively
re
ecting the plan quality, were extracted from the DVHs and analyzed as a function
of angle spread constraint for each case. Comparisons of these parameters between
clinical plans and model-based plans were evaluated by two-sampled Students t-tests,
and regression analysis on a composite index built on the percentage errors between
dosimetric parameters in the model-based plans and those in the clinical plans as a
function of angle spread constraint was performed.
Results show that model-based plans generally have equivalent or better quality
than clinical approved plans, qualitatively and quantitatively. All dosimetric param-
eters except those for lungs in the automatically generated plans are statistically
better or comparable to those in the clinical plans. On average, more than 15% re-
duction on conformity index and homogeneity index for PTV and V40, V60 for heart
while an 8% and 3% increase on V5, V20 for lungs, respectively, are observed. The
intra-plan comparison among model-based plans demonstrates that plan quality does
not change much with angle spread constraint larger than 0.4. Further examination
on the variation curve of the composite index as a function of angle spread constraint
shows that 0.6 is the optimal value that can result in statistically the best achievable
plans.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.