3 resultados para locking speed

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a noninvasive three-dimensional interferometric imaging technique capable of achieving micrometer scale resolution. It is now a standard of care in ophthalmology, where it is used to improve the accuracy of early diagnosis, to better understand the source of pathophysiology, and to monitor disease progression and response to therapy. In particular, retinal imaging has been the most prevalent clinical application of OCT, but researchers and companies alike are developing OCT systems for cardiology, dermatology, dentistry, and many other medical and industrial applications.

Adaptive optics (AO) is a technique used to reduce monochromatic aberrations in optical instruments. It is used in astronomical telescopes, laser communications, high-power lasers, retinal imaging, optical fabrication and microscopy to improve system performance. Scanning laser ophthalmoscopy (SLO) is a noninvasive confocal imaging technique that produces high contrast two-dimensional retinal images. AO is combined with SLO (AOSLO) to compensate for the wavefront distortions caused by the optics of the eye, providing the ability to visualize the living retina with cellular resolution. AOSLO has shown great promise to advance the understanding of the etiology of retinal diseases on a cellular level.

Broadly, we endeavor to enhance the vision outcome of ophthalmic patients through improved diagnostics and personalized therapy. Toward this end, the objective of the work presented herein was the development of advanced techniques for increasing the imaging speed, reducing the form factor, and broadening the versatility of OCT and AOSLO. Despite our focus on applications in ophthalmology, the techniques developed could be applied to other medical and industrial applications. In this dissertation, a technique to quadruple the imaging speed of OCT was developed. This technique was demonstrated by imaging the retinas of healthy human subjects. A handheld, dual depth OCT system was developed. This system enabled sequential imaging of the anterior segment and retina of human eyes. Finally, handheld SLO/OCT systems were developed, culminating in the design of a handheld AOSLO system. This system has the potential to provide cellular level imaging of the human retina, resolving even the most densely packed foveal cones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lateral septum is associated with the regulation of innate behavior, motivation, and locomotion. Its complex interconnections with cognitive and affective regions such as the hippocampus, hypothalamus, and medial septum have made it an attractive region for studying how motivation regulates behavior in context-specific settings. This GABAergic brain region’s main output is the lateral hypothalamus, which provides downstream signaling of motor commands. Even though stimulation of lateral septum projections to the hypothalamus have shown to decrease running speed in free behaving mice, characterizing movement kinematics due to LS activation has not been studied. GABAergic medium spiny neurons of the lateral septum were selectively activated through the use of optogenetic techniques in transgenic mice. Photostimulation of the lateral septum at theta frequencies caused a non-significant decrease in head and back speed. 3D motion analysis of body movement under photostimulation was quantified, revealing a slow, linear decrease of body speed as photostimulation progressed. These results support the role of lateral septum activation in movement regulation and shed light on the specific manner in which stimulation of the LS gradually decreases movement speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.