5 resultados para liver cell carcinoma

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The kidney's major role in filtration depends on its high blood flow, concentrating mechanisms, and biochemical activation. The kidney's greatest strengths also lead to vulnerability for drug-induced nephrotoxicity and other renal injuries. The current standard to diagnose renal injuries is with a percutaneous renal biopsy, which can be biased and insufficient. In one particular case, biopsy of a kidney with renal cell carcinoma can actually initiate metastasis. Tools that are sensitive and specific to detect renal disease early are essential, especially noninvasive diagnostic imaging. While other imaging modalities (ultrasound and x-ray/CT) have their unique advantages and disadvantages, MRI has superb soft tissue contrast without ionizing radiation. More importantly, there is a richness of contrast mechanisms in MRI that has yet to be explored and applied to study renal disease.

The focus of this work is to advance preclinical imaging tools to study the structure and function of the renal system. Studies were conducted in normal and disease models to understand general renal physiology as well as pathophysiology. This dissertation is separated into two parts--the first is the identification of renal architecture with ex vivo MRI; the second is the characterization of renal dynamics and function with in vivo MRI. High resolution ex vivo imaging provided several opportunities including: 1) identification of fine renal structures, 2) implementation of different contrast mechanisms with several pulse sequences and reconstruction methods, 3) development of image-processing tools to extract regions and structures, and 4) understanding of the nephron structures that create MR contrast and that are important for renal physiology. The ex vivo studies allowed for understanding and translation to in vivo studies. While the structure of this dissertation is organized by individual projects, the goal is singular: to develop magnetic resonance imaging biomarkers for renal system.

The work presented here includes three ex vivo studies and two in vivo studies:

1) Magnetic resonance histology of age-related nephropathy in sprague dawley.

2) Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice.

3) Susceptibility tensor imaging of the kidney and its microstructural underpinnings.

4) 4D MRI of renal function in the developing mouse.

5) 4D MRI of polycystic kidneys in rapamycin treated Glis3-deficient mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single nucleotide polymorphisms (SNPs) in the promoter region of FAS and FASLG may alter their transcriptional activity. Thus, we determined the associations between four FAS and FASLG promoter variants (FAS1377G>A, rs2234767; 670A>G, rs1800682; FASLG844T>C, rs763110 and 124A>G, rs5030772) and the risk of recurrence of squamous cell carcinoma of the oropharynx (SCCOP). We evaluated the associations between FAS and FASLG genetic variants and the risk of recurrence in a cohort of 1,008 patients. The log-rank test and multivariate Cox models were used to evaluate the associations. Compared with patients with common homozygous genotypes of FAS670 and FASLG844 polymorphisms, patients with variant genotypes had lower disease-free survival rates (log-rank p < 0.0001 and p < 0.0001, respectively) and an approximately threefold higher risk of SCCOP recurrence (HR, 3.2;95% CI, 2.2-4.6; and HR, 3.1; 95% CI, 2.2-4.4, respectively) after multivariate adjustment. Furthermore, among patients with HPV16-positive tumors, those with variant genotypes of these two polymorphisms had lower disease-free survival rates (log-rank, p < 0.0001 and p < 0.0001, respectively) and a higher recurrence risk than did patients with common homozygous genotypes (HR, 12.9; 95% CI, 3.8-43.6; and HR, 8.1; 95% CI, 3.6-18.6, respectively), whereas no significant associations were found for FAS1377 and FASLG124 polymorphisms. Our findings suggest that FAS670 and FASLG844 polymorphisms modulate the risk of recurrence of SCCOP, particularly in patients with HPV16-positive tumors. Larger studies are needed to validate these results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

UNLABELLED: Amplification of the MET oncogene is associated with poor prognosis, metastatic dissemination, and drug resistance in many malignancies. We developed a method to capture and characterize circulating tumor cells (CTC) expressing c-MET using a ferromagnetic antibody. Immunofluorescence was used to characterize cells for c-MET, DAPI, and pan-CK, excluding CD45(+) leukocytes. The assay was validated using appropriate cell line controls spiked into peripheral blood collected from healthy volunteers (HV). In addition, peripheral blood was analyzed from patients with metastatic gastric, pancreatic, colorectal, bladder, renal, or prostate cancers. CTCs captured by c-MET were enumerated, and DNA FISH for MET amplification was performed. The approach was highly sensitive (80%) for MET-amplified cells, sensitive (40%-80%) for c-MET-overexpressed cells, and specific (100%) for both c-MET-negative cells and in 20 HVs. Of 52 patients with metastatic carcinomas tested, c-MET CTCs were captured in replicate samples from 3 patients [gastric, colorectal, and renal cell carcinoma (RCC)] with 6% prevalence. CTC FISH demonstrated that MET amplification in both gastric and colorectal cancer patients and trisomy 7 with gain of MET gene copies in the RCC patient. The c-MET CTC assay is a rapid, noninvasive, sensitive, and specific method for detecting MET-amplified tumor cells. CTCs with MET amplification can be detected in patients with gastric, colorectal, and renal cancers. IMPLICATIONS: This study developed a novel c-MET CTC assay for detecting c-MET CTCs in patients with MET amplification and warrants further investigation to determine its clinical applicability. Mol Cancer Res; 14(6); 539-47. ©2016 AACR.