2 resultados para limbing fluency

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do separate neural networks interact to support complex cognitive processes such as remembrance of the personal past? Autobiographical memory (AM) retrieval recruits a consistent pattern of activation that potentially comprises multiple neural networks. However, it is unclear how such large-scale neural networks interact and are modulated by properties of the memory retrieval process. In the present functional MRI (fMRI) study, we combined independent component analysis (ICA) and dynamic causal modeling (DCM) to understand the neural networks supporting AM retrieval. ICA revealed four task-related components consistent with the previous literature: 1) medial prefrontal cortex (PFC) network, associated with self-referential processes, 2) medial temporal lobe (MTL) network, associated with memory, 3) frontoparietal network, associated with strategic search, and 4) cingulooperculum network, associated with goal maintenance. DCM analysis revealed that the medial PFC network drove activation within the system, consistent with the importance of this network to AM retrieval. Additionally, memory accessibility and recollection uniquely altered connectivity between these neural networks. Recollection modulated the influence of the medial PFC on the MTL network during elaboration, suggesting that greater connectivity among subsystems of the default network supports greater re-experience. In contrast, memory accessibility modulated the influence of frontoparietal and MTL networks on the medial PFC network, suggesting that ease of retrieval involves greater fluency among the multiple networks contributing to AM. These results show the integration between neural networks supporting AM retrieval and the modulation of network connectivity by behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Postoperative delirium is prevalent in older patients and associated with worse outcomes. Recent data in animal studies demonstrate increases in inflammatory markers in plasma and cerebrospinal fluid (CSF) even after aseptic surgery, suggesting that inflammation of the central nervous system may be part of the pathogenesis of postoperative cognitive changes. We investigated the hypothesis that neuroinflammation was an important cause for postoperative delirium and cognitive dysfunction after major non-cardiac surgery. METHODS: After Institutional Review Board approval and informed consent, we recruited patients undergoing major knee surgery who received spinal anesthesia and femoral nerve block with intravenous sedation. All patients had an indwelling spinal catheter placed at the time of spinal anesthesia that was left in place for up to 24 h. Plasma and CSF samples were collected preoperatively and at 3, 6, and 18 h postoperatively. Cytokine levels were measured using ELISA and Luminex. Postoperative delirium was determined using the confusion assessment method, and cognitive dysfunction was measured using validated cognitive tests (word list, verbal fluency test, digit symbol test). RESULTS: Ten patients with complete datasets were included. One patient developed postoperative delirium, and six patients developed postoperative cognitive dysfunction. Postoperatively, at different time points, statistically significant changes compared to baseline were present in IL-5, IL-6, I-8, IL-10, monocyte chemotactic protein (MCP)-1, macrophage inflammatory protein (MIP)-1α, IL-6/IL-10, and receptor for advanced glycation end products in plasma and in IFN-γ, IL-6, IL-8, IL-10, MCP-1, MIP-1α, MIP-1β, IL-8/IL-10, and TNF-α in CSF. CONCLUSIONS: Substantial pro- and anti-inflammatory activity in the central neural system after surgery was found. If confirmed by larger studies, persistent changes in cytokine levels may serve as biomarkers for novel clinical trials.