2 resultados para lifestyles
em Duke University
Resumo:
BACKGROUND: Vertebrate skin appendages are constructed of keratins produced by multigene families. Alpha (α) keratins are found in all vertebrates, while beta (β) keratins are found exclusively in reptiles and birds. We have studied the molecular evolution of these gene families in the genomes of 48 phylogenetically diverse birds and their expression in the scales and feathers of the chicken. RESULTS: We found that the total number of α-keratins is lower in birds than mammals and non-avian reptiles, yet two α-keratin genes (KRT42 and KRT75) have expanded in birds. The β-keratins, however, demonstrate a dynamic evolution associated with avian lifestyle. The avian specific feather β-keratins comprise a large majority of the total number of β-keratins, but independently derived lineages of aquatic and predatory birds have smaller proportions of feather β-keratin genes and larger proportions of keratinocyte β-keratin genes. Additionally, birds of prey have a larger proportion of claw β-keratins. Analysis of α- and β-keratin expression during development of chicken scales and feathers demonstrates that while α-keratins are expressed in these tissues, the number and magnitude of expressed β-keratin genes far exceeds that of α-keratins. CONCLUSIONS: These results support the view that the number of α- and β-keratin genes expressed, the proportion of the β-keratin subfamily genes expressed and the diversification of the β-keratin genes have been important for the evolution of the feather and the adaptation of birds into multiple ecological niches.
Resumo:
OBJECTIVE: A study was undertaken to determine whether better cognitive functioning at midlife among more physically fit individuals reflects neuroprotection, by which fitness protects against age-related cognitive decline, or neuroselection, by which children with higher cognitive functioning select more active lifestyles. METHODS: Children in the Dunedin Longitudinal Study (N = 1,037) completed the Wechsler Intelligence Scales and the Trail Making, Rey Delayed Recall, and Grooved Pegboard tasks as children and again at midlife (age = 38 years). Adult cardiorespiratory fitness was assessed using a submaximal exercise test to estimate maximum oxygen consumption adjusted for body weight in milliliters/minute/kilogram. We tested whether more fit individuals had better cognitive functioning than their less fit counterparts (which could be consistent with neuroprotection), and whether better childhood cognitive functioning predisposed to better adult cardiorespiratory fitness (neuroselection). Finally, we examined possible mechanisms of neuroselection. RESULTS: Participants with better cardiorespiratory fitness had higher cognitive test scores at midlife. However, fitness-associated advantages in cognitive functioning were already present in childhood. After accounting for childhood baseline performance on the same cognitive tests, there was no association between cardiorespiratory fitness and midlife cognitive functioning. Socioeconomic and health advantages in childhood and healthier lifestyles during young adulthood explained most of the association between childhood cognitive functioning and adult cardiorespiratory fitness. INTERPRETATION: We found no evidence for a neuroprotective effect of cardiorespiratory fitness as of midlife. Instead, children with better cognitive functioning are selecting healthier lives. Fitness interventions may enhance cognitive functioning. However, observational and experimental studies testing neuroprotective effects of physical fitness should consider confounding by neuroselection.