2 resultados para lending electronic materials

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successfully predicting the frequency dispersion of electronic hyperpolarizabilities is an unresolved challenge in materials science and electronic structure theory. We show that the generalized Thomas-Kuhn sum rules, combined with linear absorption data and measured hyperpolarizability at one or two frequencies, may be used to predict the entire frequency-dependent electronic hyperpolarizability spectrum. This treatment includes two- and three-level contributions that arise from the lowest two or three excited electronic state manifolds, enabling us to describe the unusual observed frequency dispersion of the dynamic hyperpolarizability in high oscillator strength M-PZn chromophores, where (porphinato)zinc(II) (PZn) and metal(II)polypyridyl (M) units are connected via an ethyne unit that aligns the high oscillator strength transition dipoles of these components in a head-to-tail arrangement. We show that some of these structures can possess very similar linear absorption spectra yet manifest dramatically different frequency dependent hyperpolarizabilities, because of three-level contributions that result from excited state-to excited state transition dipoles among charge polarized states. Importantly, this approach provides a quantitative scheme to use linear optical absorption spectra and very limited individual hyperpolarizability measurements to predict the entire frequency-dependent nonlinear optical response. Copyright © 2010 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The binary compound SnSe exhibits record high thermoelectric performance, largely because of its very low thermal conductivity. The origin of the strong phonon anharmonicity leading to the low thermal conductivity of SnSe is investigated through first-principles calculations of the electronic structure and phonons. It is shown that a Jahn-Teller instability of the electronic structure is responsible for the high-temperature lattice distortion between the Cmcm and Pnma phases. The coupling of phonon modes and the phase transition mechanism are elucidated, emphasizing the connection with hybrid improper ferroelectrics. This coupled instability of electronic orbitals and lattice dynamics is the origin of the strong anharmonicity causing the ultralow thermal conductivity in SnSe. Exploiting such bonding instabilities to generate strong anharmonicity may provide a new rational to design efficient thermoelectric materials.