2 resultados para learning object
em Duke University
Resumo:
Highlights of Data Expedition: • Students explored daily observations of local climate data spanning the past 35 years. • Topological Data Analysis, or TDA for short, provides cutting-edge tools for studying the geometry of data in arbitrarily high dimensions. • Using TDA tools, students discovered intrinsic dynamical features of the data and learned how to quantify periodic phenomenon in a time-series. • Since nature invariably produces noisy data which rarely has exact periodicity, students also considered the theoretical basis of almost-periodicity and even invented and tested new mathematical definitions of almost-periodic functions. Summary The dataset we used for this data expedition comes from the Global Historical Climatology Network. “GHCN (Global Historical Climatology Network)-Daily is an integrated database of daily climate summaries from land surface stations across the globe.” Source: https://www.ncdc.noaa.gov/oa/climate/ghcn-daily/ We focused on the daily maximum and minimum temperatures from January 1, 1980 to April 1, 2015 collected from RDU International Airport. Through a guided series of exercises designed to be performed in Matlab, students explore these time-series, initially by direct visualization and basic statistical techniques. Then students are guided through a special sliding-window construction which transforms a time-series into a high-dimensional geometric curve. These high-dimensional curves can be visualized by projecting down to lower dimensions as in the figure below (Figure 1), however, our focus here was to use persistent homology to directly study the high-dimensional embedding. The shape of these curves has meaningful information but how one describes the “shape” of data depends on which scale the data is being considered. However, choosing the appropriate scale is rarely an obvious choice. Persistent homology overcomes this obstacle by allowing us to quantitatively study geometric features of the data across multiple-scales. Through this data expedition, students are introduced to numerically computing persistent homology using the rips collapse algorithm and interpreting the results. In the specific context of sliding-window constructions, 1-dimensional persistent homology can reveal the nature of periodic structure in the original data. I created a special technique to study how these high-dimensional sliding-window curves form loops in order to quantify the periodicity. Students are guided through this construction and learn how to visualize and interpret this information. Climate data is extremely complex (as anyone who has suffered from a bad weather prediction can attest) and numerous variables play a role in determining our daily weather and temperatures. This complexity coupled with imperfections of measuring devices results in very noisy data. This causes the annual seasonal periodicity to be far from exact. To this end, I have students explore existing theoretical notions of almost-periodicity and test it on the data. They find that some existing definitions are also inadequate in this context. Hence I challenged them to invent new mathematics by proposing and testing their own definition. These students rose to the challenge and suggested a number of creative definitions. While autocorrelation and spectral methods based on Fourier analysis are often used to explore periodicity, the construction here provides an alternative paradigm to quantify periodic structure in almost-periodic signals using tools from topological data analysis.
Resumo:
This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.
The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.
Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.
Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.
The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.