2 resultados para learning approach
em Duke University
Resumo:
Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.
Resumo:
BACKGROUND: Small molecule inhibitors of histone deacetylases (HDACi) hold promise as anticancer agents for particular malignancies. However, clinical use is often confounded by toxicity, perhaps due to indiscriminate hyperacetylation of cellular proteins. Therefore, elucidating the mechanisms by which HDACi trigger differentiation, cell cycle arrest, or apoptosis of cancer cells could inform development of more targeted therapies. We used the myelogenous leukemia line K562 as a model of HDACi-induced differentiation to investigate chromatin accessibility (DNase-seq) and expression (RNA-seq) changes associated with this process. RESULTS: We identified several thousand specific regulatory elements [~10 % of total DNase I-hypersensitive (DHS) sites] that become significantly more or less accessible with sodium butyrate or suberanilohydroxamic acid treatment. Most of the differential DHS sites display hallmarks of enhancers, including being enriched for non-promoter regions, associating with nearby gene expression changes, and increasing luciferase reporter expression in K562 cells. Differential DHS sites were enriched for key hematopoietic lineage transcription factor motifs, including SPI1 (PU.1), a known pioneer factor. We found PU.1 increases binding at opened DHS sites with HDACi treatment by ChIP-seq, but PU.1 knockdown by shRNA fails to block the chromatin accessibility and expression changes. A machine-learning approach indicates H3K27me3 initially marks PU.1-bound sites that open with HDACi treatment, suggesting these sites are epigenetically poised. CONCLUSIONS: We find HDACi treatment of K562 cells results in site-specific chromatin remodeling at epigenetically poised regulatory elements. PU.1 shows evidence of a pioneer role in this process by marking poised enhancers but is not required for transcriptional activation.