6 resultados para leaf functional traits

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species invasions are more prevalent than ever before. While the addition of a species can dramatically change critical ecosystem processes, factors that mediate the direction and magnitude of those impacts have received less attention. A better understanding of the factors that mediate invasion impacts on ecosystem functioning is needed in order to target which exotic species will be most harmful and which systems are most vulnerable. The role of invasion on nitrogen (N) cycling is particularly important since N cycling controls ecosystem services that provision human health, e.g. nutrient retention and water quality.

We conducted a meta-analysis and in-depth studies focused on the invasive grass species, Microstegium vimineum, to better understand how (i) plant characteristics, (ii) invader abundance and neighbor identity, and (iii) environmental conditions mediate the impacts of invasion on N pools and fluxes. The results of our global meta-analysis support the concept that invasive species and reference community traits such as leaf %N and leaf C:N are useful for understanding invasion impacts on soil N cycling, but that trait dissimilarities between invaded and reference communities are most informative. Regarding the in-depth studies of Microstegium, we did not find evidence to suggest that invasion increases net nitrification as other studies have shown. Instead, we found that an interaction between its abundance and the neighboring plant identify were important for determining soil nitrate concentrations and net nitrification rates in the greenhouse. In field, we found that variability in environmental conditions mediated the impact of Microstegium invasion on soil N pools and fluxes, primarily net ammonification, between sites through direct, indirect, and interactive pathways. Notably, we detected a scenario in which forest openness has a negative direct effect and indirect positive effect on ammonification in sites with high soil moisture and organic matter. Collectively, our findings suggest that dissimilarity in plant community traits, neighbor identity, and environmental conditions can be important drivers of invasion impacts on ecosystem N cycling and should be considered when evaluating the ecosystem impacts of invasive species across heterogeneous landscapes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All organisms live in complex habitats that shape the course of their evolution by altering the phenotype expressed by a given genotype (a phenomenon known as phenotypic plasticity) and simultaneously by determining the evolutionary fitness of that phenotype. In some cases, phenotypic evolution may alter the environment experienced by future generations. This dissertation describes how genetic and environmental variation act synergistically to affect the evolution of glucosinolate defensive chemistry and flowering time in Boechera stricta, a wild perennial herb. I focus particularly on plant-associated microbes as a part of the plant’s environment that may alter trait evolution and in turn be affected by the evolution of those traits. In the first chapter I measure glucosinolate production and reproductive fitness of over 1,500 plants grown in common gardens in four diverse natural habitats, to describe how patterns of plasticity and natural selection intersect and may influence glucosinolate evolution. I detected extensive genetic variation for glucosinolate plasticity and determined that plasticity may aid colonization of new habitats by moving phenotypes in the same direction as natural selection. In the second chapter I conduct a greenhouse experiment to test whether naturally-occurring soil microbial communities contributed to the differences in phenotype and selection that I observed in the field experiment. I found that soil microbes cause plasticity of flowering time but not glucosinolate production, and that they may contribute to natural selection on both traits; thus, non-pathogenic plant-associated microbes are an environmental feature that could shape plant evolution. In the third chapter, I combine a multi-year, multi-habitat field experiment with high-throughput amplicon sequencing to determine whether B. stricta-associated microbial communities are shaped by plant genetic variation. I found that plant genotype predicts the diversity and composition of leaf-dwelling bacterial communities, but not root-associated bacterial communities. Furthermore, patterns of host genetic control over associated bacteria were largely site-dependent, indicating an important role for genotype-by-environment interactions in microbiome assembly. Together, my results suggest that soil microbes influence the evolution of plant functional traits and, because they are sensitive to plant genetic variation, this trait evolution may alter the microbial neighborhood of future B. stricta generations. Complex patterns of plasticity, selection, and symbiosis in natural habitats may impact the evolution of glucosinolate profiles in Boechera stricta.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.

In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.

In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ocean Sampling Day was initiated by the EU-funded Micro B3 (Marine Microbial Biodiversity, Bioinformatics, Biotechnology) project to obtain a snapshot of the marine microbial biodiversity and function of the world's oceans. It is a simultaneous global mega-sequencing campaign aiming to generate the largest standardized microbial data set in a single day. This will be achievable only through the coordinated efforts of an Ocean Sampling Day Consortium, supportive partnerships and networks between sites. This commentary outlines the establishment, function and aims of the Consortium and describes our vision for a sustainable study of marine microbial communities and their embedded functional traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Young, Smith, Coutlee and Huettel.Individuals with autistic spectrum disorders exhibit distinct personality traits linked to attentional, social, and affective functions, and those traits are expressed with varying levels of severity in the neurotypical and subclinical population. Variation in autistic traits has been linked to reduced functional and structural connectivity (i.e., underconnectivity, or reduced synchrony) with neural networks modulated by attentional, social, and affective functions. Yet, it remains unclear whether reduced synchrony between these neural networks contributes to autistic traits. To investigate this issue, we used functional magnetic resonance imaging to record brain activation while neurotypical participants who varied in their subclinical scores on the Autism-Spectrum Quotient (AQ) viewed alternating blocks of social and nonsocial stimuli (i.e., images of faces and of landscape scenes). We used independent component analysis (ICA) combined with a spatiotemporal regression to quantify synchrony between neural networks. Our results indicated that decreased synchrony between the executive control network (ECN) and a face-scene network (FSN) predicted higher scores on the AQ. This relationship was not explained by individual differences in head motion, preferences for faces, or personality variables related to social cognition. Our findings build on clinical reports by demonstrating that reduced synchrony between distinct neural networks contributes to a range of subclinical autistic traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A large proportion of the variation in traits between individuals can be attributed to variation in the nucleotide sequence of the genome. The most commonly studied traits in human genetics are related to disease and disease susceptibility. Although scientists have identified genetic causes for over 4,000 monogenic diseases, the underlying mechanisms of many highly prevalent multifactorial inheritance disorders such as diabetes, obesity, and cardiovascular disease remain largely unknown. Identifying genetic mechanisms for complex traits has been challenging because most of the variants are located outside of protein-coding regions, and determining the effects of such non-coding variants remains difficult. In this dissertation, I evaluate the hypothesis that such non-coding variants contribute to human traits and diseases by altering the regulation of genes rather than the sequence of those genes. I will specifically focus on studies to determine the functional impacts of genetic variation associated with two related complex traits: gestational hyperglycemia and fetal adiposity. At the genomic locus associated with maternal hyperglycemia, we found that genetic variation in regulatory elements altered the expression of the HKDC1 gene. Furthermore, we demonstrated that HKDC1 phosphorylates glucose in vitro and in vivo, thus demonstrating that HKDC1 is a fifth human hexokinase gene. At the fetal-adiposity associated locus, we identified variants that likely alter VEPH1 expression in preadipocytes during differentiation. To make such studies of regulatory variation high-throughput and routine, we developed POP-STARR, a novel high throughput reporter assay that can empirically measure the effects of regulatory variants directly from patient DNA. By combining targeted genome capture technologies with STARR-seq, we assayed thousands of haplotypes from 760 individuals in a single experiment. We subsequently used POP-STARR to identify three key features of regulatory variants: that regulatory variants typically have weak effects on gene expression; that the effects of regulatory variants are often coordinated with respect to disease-risk, suggesting a general mechanism by which the weak effects can together have phenotypic impact; and that nucleotide transversions have larger impacts on enhancer activity than transitions. Together, the findings presented here demonstrate successful strategies for determining the regulatory mechanisms underlying genetic associations with human traits and diseases, and value of doing so for driving novel biological discovery.