2 resultados para leaf analysis
em Duke University
Resumo:
Species invasions are more prevalent than ever before. While the addition of a species can dramatically change critical ecosystem processes, factors that mediate the direction and magnitude of those impacts have received less attention. A better understanding of the factors that mediate invasion impacts on ecosystem functioning is needed in order to target which exotic species will be most harmful and which systems are most vulnerable. The role of invasion on nitrogen (N) cycling is particularly important since N cycling controls ecosystem services that provision human health, e.g. nutrient retention and water quality.
We conducted a meta-analysis and in-depth studies focused on the invasive grass species, Microstegium vimineum, to better understand how (i) plant characteristics, (ii) invader abundance and neighbor identity, and (iii) environmental conditions mediate the impacts of invasion on N pools and fluxes. The results of our global meta-analysis support the concept that invasive species and reference community traits such as leaf %N and leaf C:N are useful for understanding invasion impacts on soil N cycling, but that trait dissimilarities between invaded and reference communities are most informative. Regarding the in-depth studies of Microstegium, we did not find evidence to suggest that invasion increases net nitrification as other studies have shown. Instead, we found that an interaction between its abundance and the neighboring plant identify were important for determining soil nitrate concentrations and net nitrification rates in the greenhouse. In field, we found that variability in environmental conditions mediated the impact of Microstegium invasion on soil N pools and fluxes, primarily net ammonification, between sites through direct, indirect, and interactive pathways. Notably, we detected a scenario in which forest openness has a negative direct effect and indirect positive effect on ammonification in sites with high soil moisture and organic matter. Collectively, our findings suggest that dissimilarity in plant community traits, neighbor identity, and environmental conditions can be important drivers of invasion impacts on ecosystem N cycling and should be considered when evaluating the ecosystem impacts of invasive species across heterogeneous landscapes.
Resumo:
Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as
`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol
particles and greenhouse gases (GHGs) as responses to their surrounding environments.
While the signicance of quantifying the exchange rates of GHGs and atmospheric
aerosol particles between the terrestrial biosphere and the atmosphere is
hardly questioned in many scientic elds, the progress in improving model predictability,
data interpretation or the combination of the two remains impeded by
the lack of precise framework elucidating their dynamic transport processes over a
wide range of spatiotemporal scales. The diculty in developing prognostic modeling
tools to quantify the source or sink strength of these atmospheric substances
can be further magnied by the fact that the climate system is also sensitive to the
feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,
the emergent need is to reduce uncertainties when assessing this complex and dynamic
feedback cycle that is necessary to support the decisions of mitigation and
adaptation policies associated with human activities (e.g., anthropogenic emission
controls and land use managements) under current and future climate regimes.
With the goal to improve the predictions for the biosphere-atmosphere exchange
of biologically active gases and atmospheric aerosol particles, the main focus of this
dissertation is on revising and up-scaling the biotic and abiotic transport processes
from leaf to canopy scales. The validity of previous modeling studies in determining
iv
the exchange rate of gases and particles is evaluated with detailed descriptions of their
limitations. Mechanistic-based modeling approaches along with empirical studies
across dierent scales are employed to rene the mathematical descriptions of surface
conductance responsible for gas and particle exchanges as commonly adopted by all
operational models. Specically, how variation in horizontal leaf area density within
the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes
and thereby the ultrane particle collection eciency at the leaf/branch scale
is explored using wind tunnel experiments with interpretations by a porous media
model and a scaling analysis. A multi-layered and size-resolved second-order closure
model combined with particle
uxes and concentration measurements within and
above a forest is used to explore the particle transport processes within the canopy
sub-layer and the partitioning of particle deposition onto canopy medium and forest
oor. For gases, a modeling framework accounting for the leaf-level boundary layer
eects on the stomatal pathway for gas exchange is proposed and combined with sap
ux measurements in a wind tunnel to assess how leaf-level transpiration varies with
increasing wind speed. How exogenous environmental conditions and endogenous
soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and
below-ground water dynamics in the soil-plant system and shape plant responses
to droughts is assessed by a porous media model that accommodates the transient
water
ow within the plant vascular system and is coupled with the aforementioned
leaf-level gas exchange model and soil-root interaction model. It should be noted
that tackling all aspects of potential issues causing uncertainties in forecasting the
feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single
dissertation but further research questions and opportunities based on the foundation
derived from this dissertation are also brie
y discussed.