2 resultados para leading learning
em Duke University
Resumo:
Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.
Resumo:
This dissertation contributes to the rapidly growing empirical research area in the field of operations management. It contains two essays, tackling two different sets of operations management questions which are motivated by and built on field data sets from two very different industries --- air cargo logistics and retailing.
The first essay, based on the data set obtained from a world leading third-party logistics company, develops a novel and general Bayesian hierarchical learning framework for estimating customers' spillover learning, that is, customers' learning about the quality of a service (or product) from their previous experiences with similar yet not identical services. We then apply our model to the data set to study how customers' experiences from shipping on a particular route affect their future decisions about shipping not only on that route, but also on other routes serviced by the same logistics company. We find that customers indeed borrow experiences from similar but different services to update their quality beliefs that determine future purchase decisions. Also, service quality beliefs have a significant impact on their future purchasing decisions. Moreover, customers are risk averse; they are averse to not only experience variability but also belief uncertainty (i.e., customer's uncertainty about their beliefs). Finally, belief uncertainty affects customers' utilities more compared to experience variability.
The second essay is based on a data set obtained from a large Chinese supermarket chain, which contains sales as well as both wholesale and retail prices of un-packaged perishable vegetables. Recognizing the special characteristics of this particularly product category, we develop a structural estimation model in a discrete-continuous choice model framework. Building on this framework, we then study an optimization model for joint pricing and inventory management strategies of multiple products, which aims at improving the company's profit from direct sales and at the same time reducing food waste and thus improving social welfare.
Collectively, the studies in this dissertation provide useful modeling ideas, decision tools, insights, and guidance for firms to utilize vast sales and operations data to devise more effective business strategies.