2 resultados para leading indicator
em Duke University
Resumo:
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Resumo:
Protein engineering over the past four years has made rhodopsin-based genetically encoded voltage indicators a leading candidate to achieve the task of reporting action potentials from a population of genetically targeted neurons in vivo. Rational design and large-scale screening efforts have steadily improved the dynamic range and kinetics of the rhodopsin voltage-sensing domain, and coupling these rhodopsins to bright fluorescent proteins has supported bright fluorescence readout of the large and rapid rhodopsin voltage response. The rhodopsin-fluorescent protein fusions have the highest achieved signal-to-noise ratios for detecting action potentials in neuronal cultures to date, and have successfully reported single spike events in vivo. Given the rapid pace of current development, the genetically encoded voltage indicator class is nearing the goal of robust spike imaging during live-animal behavioral experiments.