3 resultados para leader-follower pairs

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hoogsteen (HG) base pairs (bps) provide an alternative pairing geometry to Watson-Crick (WC) bps and can play unique functional roles in duplex DNA. Here, we use structural features unique to HG bps (syn purine base, HG hydrogen bonds and constricted C1'-C1' distance across the bp) to search for HG bps in X-ray structures of DNA duplexes in the Protein Data Bank. The survey identifies 106 A•T and 34 G•C HG bps in DNA duplexes, many of which are undocumented in the literature. It also uncovers HG-like bps with syn purines lacking HG hydrogen bonds or constricted C1'-C1' distances that are analogous to conformations that have been proposed to populate the WC-to-HG transition pathway. The survey reveals HG preferences similar to those observed for transient HG bps in solution by nuclear magnetic resonance, including stronger preferences for A•T versus G•C bps, TA versus GG steps, and also suggests enrichment at terminal ends with a preference for 5'-purine. HG bps induce small local perturbations in neighboring bps and, surprisingly, a small but significant degree of DNA bending (∼14°) directed toward the major groove. The survey provides insights into the preferences and structural consequences of HG bps in duplex DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A search for new heavy resonances decaying to boson pairs (WZ, WW or ZZ) using 20.3 inverse femtobarns of proton-proton collision data at a center of mass energy of 8 TeV is presented. The data were recorded by the ATLAS detector at the Large Hadron Collider (LHC) in 2012. The analysis combines several search channels with the leptonic, semi-leptonic and fully hadronic final states. The diboson invariant mass spectrum is studied for local excesses above the Standard Model background prediction, and no significant excess is observed for the combined analysis. 95$\%$ confidence limits are set on the cross section times branching ratios for three signal models: an extended gauge model with a heavy W boson, a bulk Randall-Sundrum model with a spin-2 graviton, and a simplified model with a heavy vector triplet. Among the individual search channels, the fully-hadronic channel is predominantly presented where boson tagging technique and jet substructure cuts are used. Local excesses are found in the dijet mass distribution around 2 TeV, leading to a global significance of 2.5 standard deviations. This deviation from the Standard Model prediction results in many theory explanations, and the possibilities could be further explored using the LHC Run 2 data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleic acids (DNA and RNA) play essential roles in the central dogma of biology for the storage and transfer of genetic information. The unique chemical and conformational structures of nucleic acids – the double helix composed of complementary Watson-Crick base pairs, provide the structural basis to carry out their biological functions. DNA double helix can dynamically accommodate Watson-Crick and Hoogsteen base-pairing, in which the purine base is flipped by ~180° degrees to adopt syn rather than anti conformation as in Watson-Crick base pairs. There is growing evidence that Hoogsteen base pairs play important roles in DNA replication, recognition, damage or mispair accommodation and repair. Here, we constructed a database for existing Hoogsteen base pairs in DNA duplexes by a structure-based survey from the Protein Data Bank, and structural analyses based on the resulted Hoogsteen structures revealed that Hoogsteen base pairs occur in a wide variety of biological contexts and can induce DNA kinking towards the major groove. As there were documented difficulties in modeling Hoogsteen or Watson-Crick by crystallography, we collaborated with the Richardsons’ lab and identified potential Hoogsteen base pairs that were mis-modeled as Watson-Crick base pairs which suggested that Hoogsteen can be more prevalent than it was thought to be. We developed solution NMR method combined with the site-specific isotope labeling to characterize the formation of, or conformational exchange with Hoogsteen base pairs in large DNA-protein complexes under solution conditions, in the absence of the crystal packing force. We showed that there are enhanced chemical exchange, potentially between Watson-Crick and Hoogsteen, at a sharp kink site in the complex formed by DNA and the Integration Host Factor protein. In stark contrast to B-form DNA, we found that Hoogsteen base pairs are strongly disfavored in A-form RNA duplex. Chemical modifications N1-methyl adenosine and N1-methyl guanosine that block Watson-Crick base-pairing, can be absorbed as Hoogsteen base pairs in DNA, but rather potently destabilized A-form RNA and caused helix melting. The intrinsic instability of Hoogsteen base pairs in A-form RNA endows the N1-methylation as a functioning post-transcriptional modification that was known to facilitate RNA folding, translation and potentially play roles in the epitranscriptome. On the other hand, the dynamic property of DNA that can accommodate Hoogsteen base pairs could be critical to maintaining the genome stability.