8 resultados para landscape diversity

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

© 2015 Taylor & Francis Group, LLC.A characteristic immunopathology of human cancers is the induction of tumor antigen-specific T lymphocyte responses within solid tumor tissues. Current strategies for immune monitoring focus on the quantification of the density and differentiation status of tumor-infiltrating T lymphocytes; however, properties of the TCR repertoire - including antigen specificity, clonality, as well as its prognostic significance β remain elusive. In this study, we enrolled 28 gastric cancer patients and collected tumor tissues, adjacent normal mucosal tissues, and peripheral blood samples to study the landscape and compartmentalization of these patients’ TCR β repertoire by deep sequencing analyses. Our results illustrated antigen-driven expansion within the tumor compartment and the contracted size of shared clonotypes in mucosa and peripheral blood. Most importantly, the diversity of mucosal T lymphocytes could independently predict prognosis, which strongly underscores critical roles of resident mucosal T-cells in executing post-surgery immunosurveillance against tumor relapse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The western Amazon is the most biologically rich part of the Amazon basin and is home to a great diversity of indigenous ethnic groups, including some of the world's last uncontacted peoples living in voluntary isolation. Unlike the eastern Brazilian Amazon, it is still a largely intact ecosystem. Underlying this landscape are large reserves of oil and gas, many yet untapped. The growing global demand is leading to unprecedented exploration and development in the region. METHODOLOGY/PRINCIPAL FINDINGS: We synthesized information from government sources to quantify the status of oil development in the western Amazon. National governments delimit specific geographic areas or "blocks" that are zoned for hydrocarbon activities, which they may lease to state and multinational energy companies for exploration and production. About 180 oil and gas blocks now cover approximately 688,000 km(2) of the western Amazon. These blocks overlap the most species-rich part of the Amazon. We also found that many of the blocks overlap indigenous territories, both titled lands and areas utilized by peoples in voluntary isolation. In Ecuador and Peru, oil and gas blocks now cover more than two-thirds of the Amazon. In Bolivia and western Brazil, major exploration activities are set to increase rapidly. CONCLUSIONS/SIGNIFICANCE: Without improved policies, the increasing scope and magnitude of planned extraction means that environmental and social impacts are likely to intensify. We review the most pressing oil- and gas-related conservation policy issues confronting the region. These include the need for regional Strategic Environmental Impact Assessments and the adoption of roadless extraction techniques. We also consider the conflicts where the blocks overlap indigenous peoples' territories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primates must navigate complex social landscapes in their daily lives: gathering information from and about others, competing with others for food and mates, and cooperating to obtain rewards as well. Gaze-following often provides important clues as to what others see, know, or will do; using information about social attention is thus crucial for primates to be competent social actors. However, the cognitive bases of the gaze-following behaviors that primates exhibit appear to vary widely across species. The ultimate challenge of such analyses will therefore be to understand why such different cognitive mechanisms have evolved across species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA) historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal) hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1) this mechanism can produce spontaneous divergence of local elevation; 2) divergent and homogenous states can exhibit global bi-stability; and 3) feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution and movement of water can influence the state and dynamics of terrestrial and aquatic ecosystems through a diversity of mechanisms. These mechanisms can be organized into three general categories wherein water acts as (1) a resource or habitat for biota, (2) a vector for connectivity and exchange of energy, materials, and organisms, and (3) as an agent of geomorphic change and disturbance. These latter two roles are highlighted in current models, which emphasize hydrologic connectivity and geomorphic change as determinants of the spatial and temporal distributions of species and processes in river systems. Water availability, on the other hand, has received less attention as a driver of ecological pattern, despite the prevalence of intermittent streams, and strong potential for environmental change to alter the spatial extent of drying in many regions. Here we summarize long-term research from a Sonoran Desert watershed to illustrate how spatial patterns of ecosystem structure and functioning reflect shifts in the relative importance of different 'roles of water' across scales of drainage size. These roles are distributed and interact hierarchically in the landscape, and for the bulk of the drainage network it is the duration of water availability that represents the primary determinant of ecological processes. Only for the largest catchments, with the most permanent flow regimes, do flood-associated disturbances and hydrologic exchange emerge as important drivers of local dynamics. While desert basins represent an extreme case, the diversity of mechanisms by which the availability and flow of water influence ecosystem structure and functioning are general. Predicting how river ecosystems may respond to future environmental pressures will require clear understanding of how changes in the spatial extent and relative overlap of these different roles of water shape ecological patterns. © 2013 Sponseller et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Phenotypic differences among species have long been systematically itemized and described by biologists in the process of investigating phylogenetic relationships and trait evolution. Traditionally, these descriptions have been expressed in natural language within the context of individual journal publications or monographs. As such, this rich store of phenotype data has been largely unavailable for statistical and computational comparisons across studies or integration with other biological knowledge. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe Phenex, a platform-independent desktop application designed to facilitate efficient and consistent annotation of phenotypic similarities and differences using Entity-Quality syntax, drawing on terms from community ontologies for anatomical entities, phenotypic qualities, and taxonomic names. Phenex can be configured to load only those ontologies pertinent to a taxonomic group of interest. The graphical user interface was optimized for evolutionary biologists accustomed to working with lists of taxa, characters, character states, and character-by-taxon matrices. CONCLUSIONS/SIGNIFICANCE: Annotation of phenotypic data using ontologies and globally unique taxonomic identifiers will allow biologists to integrate phenotypic data from different organisms and studies, leveraging decades of work in systematics and comparative morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochromes are red/far-red photoreceptors that play essential roles in diverse plant morphogenetic and physiological responses to light. Despite their functional significance, phytochrome diversity and evolution across photosynthetic eukaryotes remain poorly understood. Using newly available transcriptomic and genomic data we show that canonical plant phytochromes originated in a common ancestor of streptophytes (charophyte algae and land plants). Phytochromes in charophyte algae are structurally diverse, including canonical and non-canonical forms, whereas in land plants, phytochrome structure is highly conserved. Liverworts, hornworts and Selaginella apparently possess a single phytochrome, whereas independent gene duplications occurred within mosses, lycopods, ferns and seed plants, leading to diverse phytochrome families in these clades. Surprisingly, the phytochrome portions of algal and land plant neochromes, a chimera of phytochrome and phototropin, appear to share a common origin. Our results reveal novel phytochrome clades and establish the basis for understanding phytochrome functional evolution in land plants and their algal relatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many molecular ecological and evolutionary studies sample wild populations at a single point in time, failing to consider that data they collect represents genetic variation from a potentially unrepresentative snapshot in time. Variation across time in genetic parameters may occur quickly in species that produce multiple generations of offspring per year. However, many studies of rapid contemporary microevolution examine phenotypic trait divergence as opposed to molecular evolutionary divergence. Here, we compare genetic diversity in wild caught populations of Drosophila persimilis and D. pseudoobscura collected 16 years apart at the same time of year and same site at four X-linked and two mitochondrial loci to assess genetic stability. We found no major changes in nucleotide diversity in either species, but we observed a drastic shift in Tajima’s D between D. pseudoobscura timepoints at one locus associated with the increased abundance of a set of related haplotypes. Our data also suggests that D. persimilis may have recently accelerated its demographic expansion. While the changes we observed were modest, this study reinforces the importance of considering potential temporal variation in genetic parameters within single populations over short evolutionary timescales.