2 resultados para journalism and death

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The pathogenesis of Alzheimer’s disease (AD) is a critical unsolved question, and while recent studies have demonstrated a strong association between altered brain immune responses and disease progression, the mechanistic cause of neuronal dysfunction and death is unknown. We have previously described the unique CVN-AD mouse model of AD, in which immune-mediated nitric oxide is lowered to mimic human levels, resulting in a mouse model that demonstrates the cardinal features of AD, including amyloid deposition, hyperphosphorylated and aggregated tau, behavioral changes and age-dependent hippocampal neuronal loss. Using this mouse model, we studied longitudinal changes in brain immunity in relation to neuronal loss and, contrary to the predominant view that AD pathology is driven by pro-inflammatory factors, we find that the pathology in CVN-AD mice is driven by local immune suppression. Areas of hippocampal neuronal death are associated with the presence of immunosuppressive CD11c+ microglia and extracellular arginase, resulting in arginine catabolism and reduced levels of total brain arginine. Pharmacologic disruption of the arginine utilization pathway by an inhibitor of arginase and ornithine decarboxylase protected the mice from AD-like pathology and significantly decreased CD11c expression. Our findings strongly implicate local immune-mediated amino acid catabolism as a novel and potentially critical mechanism mediating the age-dependent and regional loss of neurons in humans with AD.

There is a large interest in identifying, lineage tracing, and determining the physiologic roles of monophagocytes in Alzheimer’s disease. While Cx3cr1 knock-in fluorescent reporting and Cre expressing mice have been critical for studying neuroimmunology, mice that are homozygous null or hemizygous for CX3CR1 have perturbed neural development and immune responses. There is, therefore, a need for similar tools in which mice are CX3CR1+/+. Here, we describe a mouse where Cre is driven by the Cx3cr1 promoter on a bacterial artificial chromosome (BAC) transgene (Cx3cr1-CreBT) and the Cx3cr1 locus is unperturbed. Similarly to Cx3cr1-Cre knock-in mice, these mice express Cre in Ly6C-, but not Ly6C+, monocytes and tissue macrophages, including microglia. These mice represent a novel tool that maintains the Cx3cr1 locus while allowing for selective gene targeting in monocytes and tissue macrophages.

The study of immunity in Alzheimer’s requires the ability to identify and quantify specific immune cell subsets by flow cytometry. While it is possible to identify lymphocyte subsets based on cell lineage-specific markers, the lack of such markers in brain myeloid cell subsets has prevented the study of monocytes, macrophages and dendritic cells. By improving on tissue homogenization, we present a comprehensive protocol for flow cytometric analysis, that allows for the identification of several cell types that have not been previously identified by flow cytometry. These cell types include F4/80hi macrophages, which may be meningeal macrophages, IA/IE+ macrophages, which may represent perivascular macrophages, and dendritic cells. The identification of these cell types now allows for their study by flow cytometry in homeostasis and disease.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly. In the human fungal pathogen Cryptococcus neoformans, previous studies have demonstrated that two distinct forms of protein prenylation, farnesylation and geranylgeranylation, are both required for cellular adaptation to stress, as well as full virulence in animal infection models. Here, we establish that the C. neoformans RAM1 gene encoding the farnesyltransferase β-subunit, though not strictly essential for growth under permissive in vitro conditions, is absolutely required for cryptococcal pathogenesis. We also identify and characterize postprenylation protease and carboxyl methyltransferase enzymes in C. neoformans. In contrast to the prenyltransferases, deletion of the genes encoding the Rce1 protease and Ste14 carboxyl methyltransferase results in subtle defects in stress response and only partial reductions in virulence. These postprenylation modifications, as well as the prenylation events themselves, do play important roles in mating and hyphal transitions, likely due to their regulation of peptide pheromones and other proteins involved in development. IMPORTANCE Cryptococcus neoformans is an important human fungal pathogen that causes disease and death in immunocompromised individuals. The growth and morphogenesis of this fungus are controlled by conserved Ras-like GTPases, which are also important for its pathogenicity. Many of these proteins require proper subcellular localization for full function, and they are directed to cellular membranes through a posttranslational modification process known as prenylation. These studies investigate the roles of one of the prenylation enzymes, farnesyltransferase, as well as the postprenylation processing enzymes in C. neoformans. We demonstrate that the postprenylation processing steps are dispensable for the localization of certain substrate proteins. However, both protein farnesylation and the subsequent postprenylation processing steps are required for full pathogenesis of this fungus.