5 resultados para interactive laboratory
em Duke University
Resumo:
Reactions to stressful negative events have long been studied using approaches based on either the narrative interpretation of the event or the traits of the individual. Here, we integrate these 2 approaches by using individual-differences measures of both the narrative interpretation of the stressful event as central to one's life and the personality characteristic of negative affectivity. We show that they each have independent contributions to stress reactions and that high levels on both produce greater than additive effects. The effects on posttraumatic stress symptoms are substantial for both undergraduates (Study 1, n = 2,296; Study 3, n = 488) and veterans (Study 2, n = 104), with mean levels for participants low on both measures near floor on posttraumatic stress symptoms and those high on both measures scoring at or above diagnostic thresholds. Study 3 included 3 measures of narrative centrality and 3 of negative affectivity to demonstrate that the effects were not limited to a single measure. In Study 4 (n = 987), measures associated with symptoms of posttraumatic stress correlated substantially with either measures of narrative centrality or measures of negative affectivity. The concepts of narrative centrality and negative affectivity and the results are consistent with findings from clinical populations using similar measures and with current approaches to therapy. In broad nonclinical populations, such as those used here, the results suggest that we might be able to substantially increase our ability to account for the severity of stress response by including both concepts.
Resumo:
An event memory is a mental construction of a scene recalled as a single occurrence. It therefore requires the hippocampus and ventral visual stream needed for all scene construction. The construction need not come with a sense of reliving or be made by a participant in the event, and it can be a summary of occurrences from more than one encoding. The mental construction, or physical rendering, of any scene must be done from a specific location and time; this introduces a "self" located in space and time, which is a necessary, but need not be a sufficient, condition for a sense of reliving. We base our theory on scene construction rather than reliving because this allows the integration of many literatures and because there is more accumulated knowledge about scene construction's phenomenology, behavior, and neural basis. Event memory differs from episodic memory in that it does not conflate the independent dimensions of whether or not a memory is relived, is about the self, is recalled voluntarily, or is based on a single encoding with whether it is recalled as a single occurrence of a scene. Thus, we argue that event memory provides a clearer contrast to semantic memory, which also can be about the self, be recalled voluntarily, and be from a unique encoding; allows for a more comprehensive dimensional account of the structure of explicit memory; and better accounts for laboratory and real-world behavioral and neural results, including those from neuropsychology and neuroimaging, than does episodic memory.
Resumo:
Functional neuroimaging studies of episodic memory retrieval generally measure brain activity while participants remember items encountered in the laboratory ("controlled laboratory condition") or events from their own life ("open autobiographical condition"). Differences in activation between these conditions may reflect differences in retrieval processes, memory remoteness, emotional content, retrieval success, self-referential processing, visual/spatial memory, and recollection. To clarify the nature of these differences, a functional MRI study was conducted using a novel "photo paradigm," which allows greater control over the autobiographical condition, including a measure of retrieval accuracy. Undergraduate students took photos in specified campus locations ("controlled autobiographical condition"), viewed in the laboratory similar photos taken by other participants (controlled laboratory condition), and were then scanned while recognizing the two kinds of photos. Both conditions activated a common episodic memory network that included medial temporal and prefrontal regions. Compared with the controlled laboratory condition, the controlled autobiographical condition elicited greater activity in regions associated with self-referential processing (medial prefrontal cortex), visual/spatial memory (visual and parahippocampal regions), and recollection (hippocampus). The photo paradigm provides a way of investigating the functional neuroanatomy of real-life episodic memory under rigorous experimental control.
Resumo:
Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.