4 resultados para inter-lingual translation

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this research is to identify the trafficking patterns that direct ribosomes to the endoplasmic reticulum (ER). It is widely believed that the SRP pathway is the only mechanism that cells use to localize mRNA and ribosomes to the ER, but this has been found not to be a sufficient explanation for the patterns of RNA localization in cells, namely that non-signal sequence-containing mRNA are translated on the ER and that ribosomes retain their membrane association after translation termination. First, a summary of the history of the field is presented to provide context for the key, unanswered questions in the field. Then, experiments employing [32Pi] pulse-chase labeling of HeLa cells over a time course to follow nascent ribosome trafficking are presented. The purpose of the cell labeling was to track rRNA processing and assembly into nascent ribosomes, followed by their export into the cytoplasm and recruitment into active polysomes. A detergent-based cell fractionation procedure was also utilized to separate the cytosol and ER compartments in order to observe ribosomes on their path as they exit the nucleus and either localize to the ER or cytosolic cellular compartment. Through this method, it was seen that ribosomes appear in both compartments at the same time, suggesting a mechanism may be occurring in addition to SRP-dependent ribosome trafficking. This research provides an understanding toward a mechanism that is not currently known, but will one day more fully explain the patterns of ribosomal localization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (IC). The product of such changes is a higher gross primary production and higher net primary production (NPP). However, fertilization may also alter carbohydrate partitioning from below- to aboveground, increasing aboveground NPP (ANPP). We analyzed effects of long-term N-fertilization on NPP, and that of long-term carbon storing organs (NPPS) in a Pinus sylvestris forest on sandy soil, a wide-ranging forest type in the boreal region. We based our analyses on a combination of destructive harvesting, consecutive mensuration, and optical measurements of canopy openness. After eight-year fertilization with a total of 70gNm-2, ANPP was 27±7% higher in the fertilized (F) relative to the reference (R) stand, but although L increased relative to its pre-fertilization values, IC was not greater than in R. On the seventh year after the treatment initiation, the increase of ANPP was matched by the decrease of belowground NPP (78 vs. 92gCm-2yr-1; ~17% of NPP) and, given the similarity of IC, suggests that the main effect of N-fertilization was changed carbon partitioning rather than increased canopy photosynthesis. Annual NPPS increased linearly with growing season temperature (T) in both treatments, with an upward shift of 70.2gCm-2yr-1 by fertilization, which also caused greater amount of unexplained variation (r2=0.53 in R, 0.21 in F). Residuals of the NPPS-T relationship of F were related to growing season precipitation (P, r2=0.48), indicating that T constrains productivity at this site regardless of fertility, while P is important in determining productivity where N-limitation is alleviated. We estimated that, in a growing season average T (11.5±1.0°C; 33-year-mean), NPPS response to N-fertilization will be nullified with P 31mm less than the mean (325±85mm), and would double with P 109mm greater than the mean. These results suggest that inter-annual variation in climate, particularly in P, may help explaining the reported large variability in growth responses to fertilization of pine stands on sandy soils. Furthermore, forest management of long-rotation systems, such as those of boreal and northern temperate forests, must consider the efficiency of fertilization in terms of wood production in the context of changes in climate predicted for the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Software-based control of life-critical embedded systems has become increasingly complex, and to a large extent has come to determine the safety of the human being. For example, implantable cardiac pacemakers have over 80,000 lines of code which are responsible for maintaining the heart within safe operating limits. As firmware-related recalls accounted for over 41% of the 600,000 devices recalled in the last decade, there is a need for rigorous model-driven design tools to generate verified code from verified software models. To this effect, we have developed the UPP2SF model-translation tool, which facilitates automatic conversion of verified models (in UPPAAL) to models that may be simulated and tested (in Simulink/Stateflow). We describe the translation rules that ensure correct model conversion, applicable to a large class of models. We demonstrate how UPP2SF is used in themodel-driven design of a pacemaker whosemodel is (a) designed and verified in UPPAAL (using timed automata), (b) automatically translated to Stateflow for simulation-based testing, and then (c) automatically generated into modular code for hardware-level integration testing of timing-related errors. In addition, we show how UPP2SF may be used for worst-case execution time estimation early in the design stage. Using UPP2SF, we demonstrate the value of integrated end-to-end modeling, verification, code-generation and testing process for complex software-controlled embedded systems. © 2014 ACM.