2 resultados para integrity of management
em Duke University
Resumo:
The complete and faithful duplication of the genome is essential to ensure normal cell division and organismal development. Eukaryotic DNA replication is initiated at multiple sites termed origins of replication that are activated at different time through S phase. The replication timing program is regulated by the S-phase checkpoint, which signals and repairs replicative stress. Eukaryotic DNA is packaged with histones into chromatin, thus DNA-templated processes including replication are modulated by the local chromatin environment such as post-translational modifications (PTMs) of histones.
One such epigenetic mark, methylation of lysine 20 on histone H4 (H4K20), has been linked to chromatin compaction, transcription, DNA repair and DNA replication. H4K20 can be mono-, di- and tri-methylated. Monomethylation of H4K20 (H4K20me1) is mediated by the cell cycle-regulated histone methyltransferase PR-Set7 and subsequent di-/tri- methylation is catalyzed by Suv4-20. Prior studies have shown that PR-Set7 depletion in mammalian cells results in defective S phase progression and the accumulation of DNA damage, which may be partially attributed to defects in origin selection and activation. Meanwhile, overexpression of mammalian PR-Set7 recruits components of pre-Replication Complex (pre-RC) onto chromatin and licenses replication origins for re-replication. However, these studies were limited to only a handful of mammalian origins, and it remains unclear how PR-Set7 impacts the replication program on a genomic scale. Finally, the methylation substrates of PR-Set7 include both histone (H4K20) and non-histone targets, therefore it is necessary to directly test the role of H4K20 methylation in PR-Set7 regulated phenotypes.
I employed genetic, cytological, and genomic approaches to better understand the role of H4K20 methylation in regulating DNA replication and genome stability in Drosophila melanogaster cells. Depletion of Drosophila PR-Set7 by RNAi in cultured Kc167 cells led to an ATR-dependent cell cycle arrest with near 4N DNA content and the accumulation of DNA damage, indicating a defect in completing S phase. The cells were arrested at the second S phase following PR-Set7 downregulation, suggesting that it was an epigenetic effect that coupled to the dilution of histone modification over multiple cell cycles. To directly test the role of H4K20 methylation in regulating genome integrity, I collaborated with the Duronio Lab and observed spontaneous DNA damage on the imaginal wing discs of third instar mutant larvae that had an alanine substitution on H4K20 (H4K20A) thus unable to be methylated, confirming that H4K20 is a bona fide target of PR-Set7 in maintaining genome integrity.
One possible source of DNA damage due to loss of PR-Set7 is reduced origin activity. I used BrdU-seq to profile the genome-wide origin activation pattern. However, I found that deregulation of H4K20 methylation states by manipulating the H4K20 methyltransferases PR-Set7 and Suv4-20 had no impact on origin activation throughout the genome. I then mapped the genomic distribution of DNA damage upon PR-Set7 depletion. Surprisingly, ChIP-seq of the DNA damage marker γ-H2A.v located the DNA damage to late replicating euchromatic regions of the Drosophila genome, and the strength of γ-H2A.v signal was uniformly distributed and spanned the entire late replication domain, implying stochastic replication fork collapse within late replicating regions. Together these data suggest that PR-Set7-mediated monomethylation of H4K20 is critical for maintaining the genomic integrity of late replicating domains, presumably via stabilization of late replicating forks.
In addition to investigating the function of H4K20me, I also used immunofluorescence to characterize the cell cycle regulated chromatin loading of Mcm2-7 complex, the DNA helicase that licenses replication origins, using H4K20me1 level as a proxy for cell cycle stages. In parallel with chromatin spindown data by Powell et al. (Powell et al. 2015), we showed a continuous loading of Mcm2-7 during G1 and a progressive removal from chromatin through S phase.
Resumo:
The purpose of this dissertation is to contribute to a better understanding of how global seafood trade interacts with the governance of small-scale fisheries (SSFs). As global seafood trade expands, SSFs have the potential to experience significant economic, social, and political benefits from participation in export markets. At the same time, market connections that place increasing pressures on resources pose risks to both the ecological and social integrity of SSFs. This dissertation seeks to explore the factors that mediate between the potential benefits and risks of global seafood markets for SSFs, with the goal of developing hypotheses regarding these relationships.
The empirical investigation consists of a series of case studies from the Yucatan Peninsula, Mexico. This is a particularly rich context in which to study global market connections with SSFs because the SSFs in this region engage in a variety of market-oriented harvests, most notably for octopus, groupers and snappers, lobster, and sea cucumber. Variation in market forms and the institutional diversity of local-level governance arrangements allows the dissertation to explore a number of examples.
The analysis is guided primarily by common-pool resource (CPR) theory because of the insights it provides regarding the conditions that facilitate collective action and the factors that promote long-lasting resource governance arrangements. Theory from institutional economics and political ecology contribute to the elaboration of a multi-faceted conceptualization of markets for CPR theory, with the aim of facilitating the identification of mechanisms through which markets and CPR governance actually interact. This dissertation conceptualizes markets as sets of institutions that structure the exchange of property rights over fisheries resources, affect the material incentives to harvest resources, and transmit ideas and values about fisheries resources and governance.
The case studies explore four different mechanisms through which markets potentially influence resource governance: 1) Markets can contribute to costly resource governance activities by offsetting costs through profits, 2) markets can undermine resource governance by generating incentives for noncompliance and lead to overharvesting resources, 3) markets can increase the costs of resource governance, for example by augmenting monitoring and enforcement burdens, and 4) markets can alter values and norms underpinning resource governance by transmitting ideas between local resource users and a variety of market actors.
Data collected using participant observation, survey, informal and structured interviews contributed to the elaboration of the following hypotheses relevant to interactions between global seafood trade and SSFs governance. 1) Roll-back neoliberalization of fisheries policies has undermined cooperatives’ ability to achieve financial success through engagement with markets and thus their potential role as key actors in resource governance (chapter two). 2) Different relations of production influence whether local governance institutions will erode or strengthen when faced with market pressures. In particular, relations of production in which fishers own their own means of production and share the collective costs of governance are more likely to strengthen resource governance while relations of production in which a single entrepreneur controls capital and access to the fishery are more likely to contribute to the erosion of resource governance institutions in the face of market pressures (chapter three). 3) By serving as a new discursive framework within which to conceive of and talk about fisheries resources, markets can influence norms and values that shape and constitute governance arrangements.
In sum, the dissertation demonstrates that global seafood trade manifests in a diversity of local forms and effects. Whether SSFs moderate risks and take advantage of benefits depends on a variety of factors, and resource users themselves have the potential to influence the outcomes of seafood market connections through local forms of collective action.