2 resultados para implications for the study of security issues
em Duke University
Resumo:
PREMISE OF THE STUDY: We investigated the origins of 252 Southern Appalachian woody species representing 158 clades to analyze larger patterns of biogeographic connectivity around the northern hemisphere. We tested biogeographic hypotheses regarding the timing of species disjunctions to eastern Asia and among areas of North America. METHODS: We delimited species into biogeographically informative clades, compiled sister-area data, and generated graphic representations of area connections across clades. We calculated taxon diversity within clades and plotted divergence times. KEY RESULTS: Of the total taxon diversity, 45% were distributed among 25 North American endemic clades. Sister taxa within eastern North America and eastern Asia were proportionally equal in frequency, accounting for over 50% of the sister-area connections. At increasing phylogenetic depth, connections to the Old World dominated. Divergence times for 65 clades with intercontinental disjunctions were continuous, whereas 11 intracontinental disjunctions to western North America and nine to eastern Mexico were temporally congruent. CONCLUSIONS: Over one third of the clades have likely undergone speciation within the region of eastern North America. The biogeographic pattern for the region is asymmetric, consisting of mostly mixed-aged, low-diversity clades connecting to the Old World, and a minority of New World clades. Divergence time data suggest that climate change in the Late Miocene to Early Pliocene generated disjunct patterns within North America. Continuous splitting times during the last 45 million years support the hypothesis that widespread distributions formed repeatedly during favorable periods, with serial cooling trends producing pseudocongruent area disjunctions between eastern North America and eastern Asia.
Resumo:
Phosphorylation of GTP-binding-regulatory (G)-protein-coupled receptors by specific G-protein-coupled receptor kinases (GRKs) is a major mechanism responsible for agonist-mediated desensitization of signal transduction processes. However, to date, studies of the specificity of these enzymes have been hampered by the difficulty of preparing the purified and reconstituted receptor preparations required as substrates. Here we describe an approach that obviates this problem by utilizing highly purified membrane preparations from Sf9 and 293 cells overexpressing G-protein-coupled receptors. We use this technique to demonstrate specificity of several GRKs with respect to both receptor substrates and the enhancing effects of G-protein beta gamma subunits on phosphorylation. Enriched membrane preparations of the beta 2- and alpha 2-C2-adrenergic receptors (ARs, where alpha 2-C2-AR refers to the AR whose gene is located on human chromosome 2) prepared by sucrose density gradient centrifugation from Sf9 or 293 cells contain the receptor at 100-300 pmol/mg of protein and serve as efficient substrates for agonist-dependent phosphorylation by beta-AR kinase 1 (GRK2), beta-AR kinase 2 (GRK3), or GRK5. Stoichiometries of agonist-mediated phosphorylation of the receptors by GRK2 (beta-AR kinase 1), in the absence and presence of G beta gamma, are 1 and 3 mol/mol, respectively. The rate of phosphorylation of the membrane receptors is 3 times faster than that of purified and reconstituted receptors. While phosphorylation of the beta 2-AR by GRK2, -3, and -5 is similar, the activity of GRK2 and -3 is enhanced by G beta gamma whereas that of GRK5 is not. In contrast, whereas GRK2 and -3 efficiently phosphorylate alpha 2-C2-AR, GRK5 is quite weak. The availability of a simple direct phosphorylation assay applicable to any cloned G-protein-coupled receptor should greatly facilitate elucidation of the mechanisms of regulation of these receptors by the expanding family of GRKs.