6 resultados para implant impression technique
em Duke University
Resumo:
Paleoprimatologists depend on relationships between form and function of teeth to reconstruct the diets of fossil species. Most of this work has been limited to studies of unworn teeth. A new approach, dental topographic analysis, allows the characterization and comparison of worn primate teeth. Variably worn museum specimens have been used to construct species-specific wear sequences so that measurements can be compared by wear stage among taxa with known differences in diet. This assumes that individuals in a species tend to wear their molar teeth in similar ways, a supposition that has yet to be tested. Here we evaluate this assumption with a longitudinal study of changes in tooth form over time in primates. Fourteen individual mantled howling monkeys (Alouatta palliata) were captured and then recaptured after 2, 4, and 7 years when possible at Hacienda La Pacifica in Costa Rica between 1989-1999. Dental impressions were taken each time, and molar casts were produced and analyzed using dental topographic analysis. Results showed consistent decreases in crown slope and occlusal relief. In contrast, crown angularity, a measure of surface jaggedness, remained fairly constant except with extreme wear. There were no evident differences between specimens collected in different microhabitats. These results suggest that different individual mantled howling monkeys wear their teeth down in similar ways, evidently following a species-specific wear sequence. Dental topographic analysis may therefore be used to compare morphology among similarly worn individuals from different species.
Resumo:
One problem with dental microwear analyses of museum material is that investigators can never be sure of the diets of the animals in question. An obvious solution to this problem is to work with live animals. Recent work with laboratory primates has shown that high resolution dental impressions can be obtained from live animals. The purpose of this study was to use similar methods to begin to document rates and patterns of dental microwear for primates in the wild. Thirty-three Alouatta palliata were captured during the wet season at Hacienda La Pacifica near Canas, Costa Rica. Dental impressions were taken and epoxy casts of the teeth were prepared using the methods of Teaford and Oyen (1989a). Scanning electron micrographs were taken of the left mandibular second molars at magnifications of 200x and 500x. Lower magnification images were used to calculate rates of wear, and higher magnification images were used to measure the size and shape of microwear features. Results indicate that, while basic patterns of dental microwear are similar in museum samples and samples of live, wild-trapped animals of the same species, ecological differences between collection locales may lead to significant intraspecific differences in dental microwear. More importantly, rates of microwear provide the first direct evidence of differences in molar use between monkeys and humans.
Resumo:
While cochlear implants (CIs) usually provide high levels of speech recognition in quiet, speech recognition in noise remains challenging. To overcome these difficulties, it is important to understand how implanted listeners separate a target signal from interferers. Stream segregation has been studied extensively in both normal and electric hearing, as a function of place of stimulation. However, the effects of pulse rate, independent of place, on the perceptual grouping of sequential sounds in electric hearing have not yet been investigated. A rhythm detection task was used to measure stream segregation. The results of this study suggest that while CI listeners can segregate streams based on differences in pulse rate alone, the amount of stream segregation observed decreases as the base pulse rate increases. Further investigation of the perceptual dimensions encoded by the pulse rate and the effect of sequential presentation of different stimulation rates on perception could be beneficial for the future development of speech processing strategies for CIs.
Resumo:
A significant challenge in environmental toxicology is that many genetic and genomic tools available in laboratory models are not developed for commonly used environmental models. The Atlantic killifish (Fundulus heteroclitus) is one of the most studied teleost environmental models, yet few genetic or genomic tools have been developed for use in this species. The advancement of genetic and evolutionary toxicology will require that many of the tools developed in laboratory models be transferred into species more applicable to environmental toxicology. Antisense morpholino oligonucleotide (MO) gene knockdown technology has been widely utilized to study development in zebrafish and has been proven to be a powerful tool in toxicological investigations through direct manipulation of molecular pathways. To expand the utility of killifish as an environmental model, MO gene knockdown technology was adapted for use in Fundulus. Morpholino microinjection methods were altered to overcome the significant differences between these two species. Morpholino efficacy and functional duration were evaluated with molecular and phenotypic methods. A cytochrome P450-1A (CYP1A) MO was used to confirm effectiveness of the methodology. For CYP1A MO-injected embryos, a 70% reduction in CYP1A activity, a 86% reduction in total CYP1A protein, a significant increase in beta-naphthoflavone-induced teratogenicity, and estimates of functional duration (50% reduction in activity 10 dpf, and 86% reduction in total protein 12 dpf) conclusively demonstrated that MO technologies can be used effectively in killifish and will likely be just as informative as they have been in zebrafish.
Resumo:
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.
Resumo:
BACKGROUND: The bioluminescence technique was used to quantify the local glucose concentration in the tissue surrounding subcutaneously implanted polyurethane material and surrounding glucose sensors. In addition, some implants were coated with a single layer of adipose-derived stromal cells (ASCs) because these cells improve the wound-healing response around biomaterials. METHODS: Control and ASC-coated implants were implanted subcutaneously in rats for 1 or 8 weeks (polyurethane) or for 1 week only (glucose sensors). Tissue biopsies adjacent to the implant were immediately frozen at the time of explant. Cryosections were assayed for glucose concentration profile using the bioluminescence technique. RESULTS: For the polyurethane samples, no significant differences in glucose concentration within 100 μm of the implant surface were found between bare and ASC-coated implants at 1 or 8 weeks. A glucose concentration gradient was demonstrated around the glucose sensors. For all sensors, the minimum glucose concentration of approximately 4 mM was found at the implant surface and increased with distance from the sensor surface until the glucose concentration peaked at approximately 7 mM at 100 μm. Then the glucose concentration decreased to 5.5-6.5 mM more than 100 μmm from the surface. CONCLUSIONS: The ASC attachment to polyurethane and to glucose sensors did not change the glucose profiles in the tissue surrounding the implants. Although most glucose sensors incorporate a diffusion barrier to reduce the gradient of glucose and oxygen in the tissue, it is typically assumed that there is no steep glucose gradient around the sensors. However, a glucose gradient was observed around the sensors. A more complete understanding of glucose transport and concentration gradients around sensors is critical.