7 resultados para image reconstruction

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

On-board image guidance, such as cone-beam CT (CBCT) and kV/MV 2D imaging, is essential in many radiation therapy procedures, such as intensity modulated radiotherapy (IMRT) and stereotactic body radiation therapy (SBRT). These imaging techniques provide predominantly anatomical information for treatment planning and target localization. Recently, studies have shown that treatment planning based on functional and molecular information about the tumor and surrounding tissue could potentially improve the effectiveness of radiation therapy. However, current on-board imaging systems are limited in their functional and molecular imaging capability. Single Photon Emission Computed Tomography (SPECT) is a candidate to achieve on-board functional and molecular imaging. Traditional SPECT systems typically take 20 minutes or more for a scan, which is too long for on-board imaging. A robotic multi-pinhole SPECT system was proposed in this dissertation to provide shorter imaging time by using a robotic arm to maneuver the multi-pinhole SPECT system around the patient in position for radiation therapy.

A 49-pinhole collimated SPECT detector and its shielding were designed and simulated in this work using the computer-aided design (CAD) software. The trajectories of robotic arm about the patient, treatment table and gantry in the radiation therapy room and several detector assemblies such as parallel holes, single pinhole and 49 pinholes collimated detector were investigated. The rail mounted system was designed to enable a full range of detector positions and orientations to various crucial treatment sites including head and torso, while avoiding collision with linear accelerator (LINAC), patient table and patient.

An alignment method was developed in this work to calibrate the on-board robotic SPECT to the LINAC coordinate frame and to the coordinate frames of other on-board imaging systems such as CBCT. This alignment method utilizes line sources and one pinhole projection of these line sources. The model consists of multiple alignment parameters which maps line sources in 3-dimensional (3D) space to their 2-dimensional (2D) projections on the SPECT detector. Computer-simulation studies and experimental evaluations were performed as a function of number of line sources, Radon transform accuracy, finite line-source width, intrinsic camera resolution, Poisson noise and acquisition geometry. In computer-simulation studies, when there was no error in determining angles (α) and offsets (ρ) of the measured projections, the six alignment parameters (3 translational and 3 rotational) were estimated perfectly using three line sources. When angles (α) and offsets (ρ) were provided by Radon transform, the estimation accuracy was reduced. The estimation error was associated with rounding errors of Radon transform, finite line-source width, Poisson noise, number of line sources, intrinsic camera resolution and detector acquisition geometry. The estimation accuracy was significantly improved by using 4 line sources rather than 3 and also by using thinner line-source projections (obtained by better intrinsic detector resolution). With 5 line sources, median errors were 0.2 mm for the detector translations, 0.7 mm for the detector radius of rotation, and less than 0.5° for detector rotation, tilt and twist. In experimental evaluations, average errors relative to a different, independent registration technique were about 1.8 mm for detector translations, 1.1 mm for the detector radius of rotation (ROR), 0.5° and 0.4° for detector rotation and tilt, respectively, and 1.2° for detector twist.

Simulation studies were performed to investigate the improvement of imaging sensitivity and accuracy of hot sphere localization for breast imaging of patients in prone position. A 3D XCAT phantom was simulated in the prone position with nine hot spheres of 10 mm diameter added in the left breast. A no-treatment-table case and two commercial prone breast boards, 7 and 24 cm thick, were simulated. Different pinhole focal lengths were assessed for root-mean-square-error (RMSE). The pinhole focal lengths resulting in the lowest RMSE values were 12 cm, 18 cm and 21 cm for no table, thin board, and thick board, respectively. In both no table and thin board cases, all 9 hot spheres were easily visualized above background with 4-minute scans utilizing the 49-pinhole SPECT system while seven of nine hot spheres were visible with the thick board. In comparison with parallel-hole system, our 49-pinhole system shows reduction in noise and bias under these simulation cases. These results correspond to smaller radii of rotation for no-table case and thinner prone board. Similarly, localization accuracy with the 49-pinhole system was significantly better than with the parallel-hole system for both the thin and thick prone boards. Median localization errors for the 49-pinhole system with the thin board were less than 3 mm for 5 of 9 hot spheres, and less than 6 mm for the other 4 hot spheres. Median localization errors of 49-pinhole system with the thick board were less than 4 mm for 5 of 9 hot spheres, and less than 8 mm for the other 4 hot spheres.

Besides prone breast imaging, respiratory-gated region-of-interest (ROI) imaging of lung tumor was also investigated. A simulation study was conducted on the potential of multi-pinhole, region-of-interest (ROI) SPECT to alleviate noise effects associated with respiratory-gated SPECT imaging of the thorax. Two 4D XCAT digital phantoms were constructed, with either a 10 mm or 20 mm diameter tumor added in the right lung. The maximum diaphragm motion was 2 cm (for 10 mm tumor) or 4 cm (for 20 mm tumor) in superior-inferior direction and 1.2 cm in anterior-posterior direction. Projections were simulated with a 4-minute acquisition time (40 seconds per each of 6 gates) using either the ROI SPECT system (49-pinhole) or reference single and dual conventional broad cross-section, parallel-hole collimated SPECT. The SPECT images were reconstructed using OSEM with up to 6 iterations. Images were evaluated as a function of gate by profiles, noise versus bias curves, and a numerical observer performing a forced-choice localization task. Even for the 20 mm tumor, the 49-pinhole imaging ROI was found sufficient to encompass fully usual clinical ranges of diaphragm motion. Averaged over the 6 gates, noise at iteration 6 of 49-pinhole ROI imaging (10.9 µCi/ml) was approximately comparable to noise at iteration 2 of the two dual and single parallel-hole, broad cross-section systems (12.4 µCi/ml and 13.8 µCi/ml, respectively). Corresponding biases were much lower for the 49-pinhole ROI system (3.8 µCi/ml), versus 6.2 µCi/ml and 6.5 µCi/ml for the dual and single parallel-hole systems, respectively. Median localization errors averaged over 6 gates, for the 10 mm and 20 mm tumors respectively, were 1.6 mm and 0.5 mm using the ROI imaging system and 6.6 mm and 2.3 mm using the dual parallel-hole, broad cross-section system. The results demonstrate substantially improved imaging via ROI methods. One important application may be gated imaging of patients in position for radiation therapy.

A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150-L110 robot). An imaging study was performed with a phantom (PET CT PhantomTM), which includes 5 spheres of 10, 13, 17, 22 and 28 mm in diameter. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single-pinhole collimator both without background in the phantom, and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180 degrees and 228 degrees respectively. The pinhole detector viewed a 14.7 cm-diameter common volume which encompassed the 28 mm and 22 mm spheres. The common volume for parallel-hole was a 20.8-cm-diameter cylinder which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the flat-top table while avoiding collision with the table and maintaining the closest possible proximity to the common volume. For image reconstruction, detector trajectories were described by radius-of-rotation and detector rotation angle θ. These reconstruction parameters were obtained from the robot base and tool coordinates. The robotic SPECT system was able to maneuver the parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector to center-of-rotation (COR) distance. In no background case, all five spheres were visible in the reconstructed parallel-hole and pinhole images. In with background case, three spheres of 17, 22 and 28 mm diameter were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameter) were readily observed in the pinhole ROI imaging.

In conclusion, the proposed on-board robotic SPECT can be aligned to LINAC/CBCT with a single pinhole projection of the line-source phantom. Alignment parameters can be estimated using one pinhole projection of line sources. This alignment method may be important for multi-pinhole SPECT, where relative pinhole alignment may vary during rotation. For single pinhole and multi-pinhole SPECT imaging onboard radiation therapy machines, the method could provide alignment of SPECT coordinates with those of CBCT and the LINAC. In simulation studies of prone breast imaging and respiratory-gated lung imaging, the 49-pinhole detector showed better tumor contrast recovery and localization in a 4-minute scan compared to parallel-hole detector. On-board SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frames could be an effective means to estimate detector pose for use in SPECT image reconstruction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dissertation studies the coding strategies of computational imaging to overcome the limitation of conventional sensing techniques. The information capacity of conventional sensing is limited by the physical properties of optics, such as aperture size, detector pixels, quantum efficiency, and sampling rate. These parameters determine the spatial, depth, spectral, temporal, and polarization sensitivity of each imager. To increase sensitivity in any dimension can significantly compromise the others.

This research implements various coding strategies subject to optical multidimensional imaging and acoustic sensing in order to extend their sensing abilities. The proposed coding strategies combine hardware modification and signal processing to exploiting bandwidth and sensitivity from conventional sensors. We discuss the hardware architecture, compression strategies, sensing process modeling, and reconstruction algorithm of each sensing system.

Optical multidimensional imaging measures three or more dimensional information of the optical signal. Traditional multidimensional imagers acquire extra dimensional information at the cost of degrading temporal or spatial resolution. Compressive multidimensional imaging multiplexes the transverse spatial, spectral, temporal, and polarization information on a two-dimensional (2D) detector. The corresponding spectral, temporal and polarization coding strategies adapt optics, electronic devices, and designed modulation techniques for multiplex measurement. This computational imaging technique provides multispectral, temporal super-resolution, and polarization imaging abilities with minimal loss in spatial resolution and noise level while maintaining or gaining higher temporal resolution. The experimental results prove that the appropriate coding strategies may improve hundreds times more sensing capacity.

Human auditory system has the astonishing ability in localizing, tracking, and filtering the selected sound sources or information from a noisy environment. Using engineering efforts to accomplish the same task usually requires multiple detectors, advanced computational algorithms, or artificial intelligence systems. Compressive acoustic sensing incorporates acoustic metamaterials in compressive sensing theory to emulate the abilities of sound localization and selective attention. This research investigates and optimizes the sensing capacity and the spatial sensitivity of the acoustic sensor. The well-modeled acoustic sensor allows localizing multiple speakers in both stationary and dynamic auditory scene; and distinguishing mixed conversations from independent sources with high audio recognition rate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic resonance imaging is a research and clinical tool that has been applied in a wide variety of sciences. One area of magnetic resonance imaging that has exhibited terrific promise and growth in the past decade is magnetic susceptibility imaging. Imaging tissue susceptibility provides insight into the microstructural organization and chemical properties of biological tissues, but this image contrast is not well understood. The purpose of this work is to develop effective approaches to image, assess, and model the mechanisms that generate both isotropic and anisotropic magnetic susceptibility contrast in biological tissues, including myocardium and central nervous system white matter.

This document contains the first report of MRI-measured susceptibility anisotropy in myocardium. Intact mouse heart specimens were scanned using MRI at 9.4 T to ascertain both the magnetic susceptibility and myofiber orientation of the tissue. The susceptibility anisotropy of myocardium was observed and measured by relating the apparent tissue susceptibility as a function of the myofiber angle with respect to the applied magnetic field. A multi-filament model of myocardial tissue revealed that the diamagnetically anisotropy α-helix peptide bonds in myofilament proteins are capable of producing bulk susceptibility anisotropy on a scale measurable by MRI, and are potentially the chief sources of the experimentally observed anisotropy.

The growing use of paramagnetic contrast agents in magnetic susceptibility imaging motivated a series of investigations regarding the effect of these exogenous agents on susceptibility imaging in the brain, heart, and kidney. In each of these organs, gadolinium increases susceptibility contrast and anisotropy, though the enhancements depend on the tissue type, compartmentalization of contrast agent, and complex multi-pool relaxation. In the brain, the introduction of paramagnetic contrast agents actually makes white matter tissue regions appear more diamagnetic relative to the reference susceptibility. Gadolinium-enhanced MRI yields tensor-valued susceptibility images with eigenvectors that more accurately reflect the underlying tissue orientation.

Despite the boost gadolinium provides, tensor-valued susceptibility image reconstruction is prone to image artifacts. A novel algorithm was developed to mitigate these artifacts by incorporating orientation-dependent tissue relaxation information into susceptibility tensor estimation. The technique was verified using a numerical phantom simulation, and improves susceptibility-based tractography in the brain, kidney, and heart. This work represents the first successful application of susceptibility-based tractography to a whole, intact heart.

The knowledge and tools developed throughout the course of this research were then applied to studying mouse models of Alzheimer’s disease in vivo, and studying hypertrophic human myocardium specimens ex vivo. Though a preliminary study using contrast-enhanced quantitative susceptibility mapping has revealed diamagnetic amyloid plaques associated with Alzheimer’s disease in the mouse brain ex vivo, non-contrast susceptibility imaging was unable to precisely identify these plaques in vivo. Susceptibility tensor imaging of human myocardium specimens at 9.4 T shows that susceptibility anisotropy is larger and mean susceptibility is more diamagnetic in hypertrophic tissue than in normal tissue. These findings support the hypothesis that myofilament proteins are a source of susceptibility contrast and anisotropy in myocardium. This collection of preclinical studies provides new tools and context for analyzing tissue structure, chemistry, and health in a variety of organs throughout the body.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract

The goal of modern radiotherapy is to precisely deliver a prescribed radiation dose to delineated target volumes that contain a significant amount of tumor cells while sparing the surrounding healthy tissues/organs. Precise delineation of treatment and avoidance volumes is the key for the precision radiation therapy. In recent years, considerable clinical and research efforts have been devoted to integrate MRI into radiotherapy workflow motivated by the superior soft tissue contrast and functional imaging possibility. Dynamic contrast-enhanced MRI (DCE-MRI) is a noninvasive technique that measures properties of tissue microvasculature. Its sensitivity to radiation-induced vascular pharmacokinetic (PK) changes has been preliminary demonstrated. In spite of its great potential, two major challenges have limited DCE-MRI’s clinical application in radiotherapy assessment: the technical limitations of accurate DCE-MRI imaging implementation and the need of novel DCE-MRI data analysis methods for richer functional heterogeneity information.

This study aims at improving current DCE-MRI techniques and developing new DCE-MRI analysis methods for particular radiotherapy assessment. Thus, the study is naturally divided into two parts. The first part focuses on DCE-MRI temporal resolution as one of the key DCE-MRI technical factors, and some improvements regarding DCE-MRI temporal resolution are proposed; the second part explores the potential value of image heterogeneity analysis and multiple PK model combination for therapeutic response assessment, and several novel DCE-MRI data analysis methods are developed.

I. Improvement of DCE-MRI temporal resolution. First, the feasibility of improving DCE-MRI temporal resolution via image undersampling was studied. Specifically, a novel MR image iterative reconstruction algorithm was studied for DCE-MRI reconstruction. This algorithm was built on the recently developed compress sensing (CS) theory. By utilizing a limited k-space acquisition with shorter imaging time, images can be reconstructed in an iterative fashion under the regularization of a newly proposed total generalized variation (TGV) penalty term. In the retrospective study of brain radiosurgery patient DCE-MRI scans under IRB-approval, the clinically obtained image data was selected as reference data, and the simulated accelerated k-space acquisition was generated via undersampling the reference image full k-space with designed sampling grids. Two undersampling strategies were proposed: 1) a radial multi-ray grid with a special angular distribution was adopted to sample each slice of the full k-space; 2) a Cartesian random sampling grid series with spatiotemporal constraints from adjacent frames was adopted to sample the dynamic k-space series at a slice location. Two sets of PK parameters’ maps were generated from the undersampled data and from the fully-sampled data, respectively. Multiple quantitative measurements and statistical studies were performed to evaluate the accuracy of PK maps generated from the undersampled data in reference to the PK maps generated from the fully-sampled data. Results showed that at a simulated acceleration factor of four, PK maps could be faithfully calculated from the DCE images that were reconstructed using undersampled data, and no statistically significant differences were found between the regional PK mean values from undersampled and fully-sampled data sets. DCE-MRI acceleration using the investigated image reconstruction method has been suggested as feasible and promising.

Second, for high temporal resolution DCE-MRI, a new PK model fitting method was developed to solve PK parameters for better calculation accuracy and efficiency. This method is based on a derivative-based deformation of the commonly used Tofts PK model, which is presented as an integrative expression. This method also includes an advanced Kolmogorov-Zurbenko (KZ) filter to remove the potential noise effect in data and solve the PK parameter as a linear problem in matrix format. In the computer simulation study, PK parameters representing typical intracranial values were selected as references to simulated DCE-MRI data for different temporal resolution and different data noise level. Results showed that at both high temporal resolutions (<1s) and clinically feasible temporal resolution (~5s), this new method was able to calculate PK parameters more accurate than the current calculation methods at clinically relevant noise levels; at high temporal resolutions, the calculation efficiency of this new method was superior to current methods in an order of 102. In a retrospective of clinical brain DCE-MRI scans, the PK maps derived from the proposed method were comparable with the results from current methods. Based on these results, it can be concluded that this new method can be used for accurate and efficient PK model fitting for high temporal resolution DCE-MRI.

II. Development of DCE-MRI analysis methods for therapeutic response assessment. This part aims at methodology developments in two approaches. The first one is to develop model-free analysis method for DCE-MRI functional heterogeneity evaluation. This approach is inspired by the rationale that radiotherapy-induced functional change could be heterogeneous across the treatment area. The first effort was spent on a translational investigation of classic fractal dimension theory for DCE-MRI therapeutic response assessment. In a small-animal anti-angiogenesis drug therapy experiment, the randomly assigned treatment/control groups received multiple fraction treatments with one pre-treatment and multiple post-treatment high spatiotemporal DCE-MRI scans. In the post-treatment scan two weeks after the start, the investigated Rényi dimensions of the classic PK rate constant map demonstrated significant differences between the treatment and the control groups; when Rényi dimensions were adopted for treatment/control group classification, the achieved accuracy was higher than the accuracy from using conventional PK parameter statistics. Following this pilot work, two novel texture analysis methods were proposed. First, a new technique called Gray Level Local Power Matrix (GLLPM) was developed. It intends to solve the lack of temporal information and poor calculation efficiency of the commonly used Gray Level Co-Occurrence Matrix (GLCOM) techniques. In the same small animal experiment, the dynamic curves of Haralick texture features derived from the GLLPM had an overall better performance than the corresponding curves derived from current GLCOM techniques in treatment/control separation and classification. The second developed method is dynamic Fractal Signature Dissimilarity (FSD) analysis. Inspired by the classic fractal dimension theory, this method measures the dynamics of tumor heterogeneity during the contrast agent uptake in a quantitative fashion on DCE images. In the small animal experiment mentioned before, the selected parameters from dynamic FSD analysis showed significant differences between treatment/control groups as early as after 1 treatment fraction; in contrast, metrics from conventional PK analysis showed significant differences only after 3 treatment fractions. When using dynamic FSD parameters, the treatment/control group classification after 1st treatment fraction was improved than using conventional PK statistics. These results suggest the promising application of this novel method for capturing early therapeutic response.

The second approach of developing novel DCE-MRI methods is to combine PK information from multiple PK models. Currently, the classic Tofts model or its alternative version has been widely adopted for DCE-MRI analysis as a gold-standard approach for therapeutic response assessment. Previously, a shutter-speed (SS) model was proposed to incorporate transcytolemmal water exchange effect into contrast agent concentration quantification. In spite of richer biological assumption, its application in therapeutic response assessment is limited. It might be intriguing to combine the information from the SS model and from the classic Tofts model to explore potential new biological information for treatment assessment. The feasibility of this idea was investigated in the same small animal experiment. The SS model was compared against the Tofts model for therapeutic response assessment using PK parameter regional mean value comparison. Based on the modeled transcytolemmal water exchange rate, a biological subvolume was proposed and was automatically identified using histogram analysis. Within the biological subvolume, the PK rate constant derived from the SS model were proved to be superior to the one from Tofts model in treatment/control separation and classification. Furthermore, novel biomarkers were designed to integrate PK rate constants from these two models. When being evaluated in the biological subvolume, this biomarker was able to reflect significant treatment/control difference in both post-treatment evaluation. These results confirm the potential value of SS model as well as its combination with Tofts model for therapeutic response assessment.

In summary, this study addressed two problems of DCE-MRI application in radiotherapy assessment. In the first part, a method of accelerating DCE-MRI acquisition for better temporal resolution was investigated, and a novel PK model fitting algorithm was proposed for high temporal resolution DCE-MRI. In the second part, two model-free texture analysis methods and a multiple-model analysis method were developed for DCE-MRI therapeutic response assessment. The presented works could benefit the future DCE-MRI routine clinical application in radiotherapy assessment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: A projection onto convex sets reconstruction of multiplexed sensitivity encoded MRI (POCSMUSE) is developed to reduce motion-related artifacts, including respiration artifacts in abdominal imaging and aliasing artifacts in interleaved diffusion-weighted imaging. THEORY: Images with reduced artifacts are reconstructed with an iterative projection onto convex sets (POCS) procedure that uses the coil sensitivity profile as a constraint. This method can be applied to data obtained with different pulse sequences and k-space trajectories. In addition, various constraints can be incorporated to stabilize the reconstruction of ill-conditioned matrices. METHODS: The POCSMUSE technique was applied to abdominal fast spin-echo imaging data, and its effectiveness in respiratory-triggered scans was evaluated. The POCSMUSE method was also applied to reduce aliasing artifacts due to shot-to-shot phase variations in interleaved diffusion-weighted imaging data corresponding to different k-space trajectories and matrix condition numbers. RESULTS: Experimental results show that the POCSMUSE technique can effectively reduce motion-related artifacts in data obtained with different pulse sequences, k-space trajectories and contrasts. CONCLUSION: POCSMUSE is a general post-processing algorithm for reduction of motion-related artifacts. It is compatible with different pulse sequences, and can also be used to further reduce residual artifacts in data produced by existing motion artifact reduction methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: X-ray computed tomography (CT) is widely used, both clinically and preclinically, for fast, high-resolution anatomic imaging; however, compelling opportunities exist to expand its use in functional imaging applications. For instance, spectral information combined with nanoparticle contrast agents enables quantification of tissue perfusion levels, while temporal information details cardiac and respiratory dynamics. The authors propose and demonstrate a projection acquisition and reconstruction strategy for 5D CT (3D+dual energy+time) which recovers spectral and temporal information without substantially increasing radiation dose or sampling time relative to anatomic imaging protocols. METHODS: The authors approach the 5D reconstruction problem within the framework of low-rank and sparse matrix decomposition. Unlike previous work on rank-sparsity constrained CT reconstruction, the authors establish an explicit rank-sparse signal model to describe the spectral and temporal dimensions. The spectral dimension is represented as a well-sampled time and energy averaged image plus regularly undersampled principal components describing the spectral contrast. The temporal dimension is represented as the same time and energy averaged reconstruction plus contiguous, spatially sparse, and irregularly sampled temporal contrast images. Using a nonlinear, image domain filtration approach, the authors refer to as rank-sparse kernel regression, the authors transfer image structure from the well-sampled time and energy averaged reconstruction to the spectral and temporal contrast images. This regularization strategy strictly constrains the reconstruction problem while approximately separating the temporal and spectral dimensions. Separability results in a highly compressed representation for the 5D data in which projections are shared between the temporal and spectral reconstruction subproblems, enabling substantial undersampling. The authors solved the 5D reconstruction problem using the split Bregman method and GPU-based implementations of backprojection, reprojection, and kernel regression. Using a preclinical mouse model, the authors apply the proposed algorithm to study myocardial injury following radiation treatment of breast cancer. RESULTS: Quantitative 5D simulations are performed using the MOBY mouse phantom. Twenty data sets (ten cardiac phases, two energies) are reconstructed with 88 μm, isotropic voxels from 450 total projections acquired over a single 360° rotation. In vivo 5D myocardial injury data sets acquired in two mice injected with gold and iodine nanoparticles are also reconstructed with 20 data sets per mouse using the same acquisition parameters (dose: ∼60 mGy). For both the simulations and the in vivo data, the reconstruction quality is sufficient to perform material decomposition into gold and iodine maps to localize the extent of myocardial injury (gold accumulation) and to measure cardiac functional metrics (vascular iodine). Their 5D CT imaging protocol represents a 95% reduction in radiation dose per cardiac phase and energy and a 40-fold decrease in projection sampling time relative to their standard imaging protocol. CONCLUSIONS: Their 5D CT data acquisition and reconstruction protocol efficiently exploits the rank-sparse nature of spectral and temporal CT data to provide high-fidelity reconstruction results without increased radiation dose or sampling time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.

A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.

Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.

The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).

First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.

Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.

Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.

The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.

To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.

The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.

The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.

Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.

The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.

In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.