20 resultados para hypotheses
em Duke University
Resumo:
We use a formal bargaining model to examine why, in many domestic and international bargaining situations, one or both negotiators make public statements in front of their constituents committing themselves to obtaining certain benefits in the negotiations. We find that making public commitments provides bargaining leverage, when backing down from such commitments carries domestic political costs. However, when the two negotiators face fairly similar costs for violating a public commitment, a prisoner's dilemma is created in which both sides make high public demands which cannot be satisfied, and both negotiators would be better off if they could commit to not making public demands. However, making a public demand is a dominant strategy for each negotiator, and this leads to a suboptimal outcome. Escaping this prisoner's dilemma provides a rationale for secret negotiations. Testable hypotheses are derived from the nature of the commitments and agreements made in equilibrium.
Atmospheric neutrino oscillation analysis with subleading effects in Super-Kamiokande I, II, and III
Resumo:
We present a search for nonzero θ13 and deviations of sin2θ23 from 0.5 in the oscillations of atmospheric neutrino data from Super-Kamiokande I, II, and III. No distortions of the neutrino flux consistent with nonzero θ13 are found and both neutrino mass hierarchy hypotheses are in agreement with the data. The data are best fit at Δm2=2.1×10-3eV2, sin2θ13=0.0, and sin2θ23=0.5. In the normal (inverted) hierarchy θ13 and Δm2 are constrained at the one-dimensional 90% C.L. to sin2θ13<0.04(0.09) and 1.9(1.7)×10 -3<Δm2<2.6(2.7)×10-3eV2. The atmospheric mixing angle is within 0.407≤sin2θ23≤0.583 at 90% C.L. © 2010 The American Physical Society.
Resumo:
BACKGROUND: One year after the introduction of Information and Communication Technology (ICT) to support diagnostic imaging at our hospital, clinicians had faster and better access to radiology reports and images; direct access to Computed Tomography (CT) reports in the Electronic Medical Record (EMR) was particularly popular. The objective of this study was to determine whether improvements in radiology reporting and clinical access to diagnostic imaging information one year after the ICT introduction were associated with a reduction in the length of patients' hospital stays (LOS). METHODS: Data describing hospital stays and diagnostic imaging were collected retrospectively from the EMR during periods of equal duration before and one year after the introduction of ICT. The post-ICT period was chosen because of the documented improvement in clinical access to radiology results during that period. The data set was randomly split into an exploratory part used to establish the hypotheses, and a confirmatory part. The data was used to compare the pre-ICT and post-ICT status, but also to compare differences between groups. RESULTS: There was no general reduction in LOS one year after ICT introduction. However, there was a 25% reduction for one group - patients with CT scans. This group was heterogeneous, covering 445 different primary discharge diagnoses. Analyses of subgroups were performed to reduce the impact of this divergence. CONCLUSION: Our results did not indicate that improved access to radiology results reduced the patients' LOS. There was, however, a significant reduction in LOS for patients undergoing CT scans. Given the clinicians' interest in CT reports and the results of the subgroup analyses, it is likely that improved access to CT reports contributed to this reduction.
Resumo:
Using novel data on European firms, this paper investigates the relationship between business groups and innovation. Controlling for various firm characteristics, we find that group affiliates are more innovative than standalones. We examine several hypotheses to explain this finding, focusing on group internal capital markets and knowledge spillovers. We find that group affiliation is particularly important for innovation in industries that rely more on external funding and in groups with more diversified capital sources, consistent with the internal capital markets hypothesis. Our results suggest that knowledge spillovers are not the main driver of innovation in business groups because firms affiliated with the same group do not have a common research focus and are unlikely to cite each other's patents. © 2010 INFORMS.
Resumo:
The computational detection of regulatory elements in DNA is a difficult but important problem impacting our progress in understanding the complex nature of eukaryotic gene regulation. Attempts to utilize cross-species conservation for this task have been hampered both by evolutionary changes of functional sites and poor performance of general-purpose alignment programs when applied to non-coding sequence. We describe a new and flexible framework for modeling binding site evolution in multiple related genomes, based on phylogenetic pair hidden Markov models which explicitly model the gain and loss of binding sites along a phylogeny. We demonstrate the value of this framework for both the alignment of regulatory regions and the inference of precise binding-site locations within those regions. As the underlying formalism is a stochastic, generative model, it can also be used to simulate the evolution of regulatory elements. Our implementation is scalable in terms of numbers of species and sequence lengths and can produce alignments and binding-site predictions with accuracy rivaling or exceeding current systems that specialize in only alignment or only binding-site prediction. We demonstrate the validity and power of various model components on extensive simulations of realistic sequence data and apply a specific model to study Drosophila enhancers in as many as ten related genomes and in the presence of gain and loss of binding sites. Different models and modeling assumptions can be easily specified, thus providing an invaluable tool for the exploration of biological hypotheses that can drive improvements in our understanding of the mechanisms and evolution of gene regulation.
Resumo:
Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.
Resumo:
Chimpanzees (Pan troglodytes) are often used in movies, commercials and print advertisements with the intention of eliciting a humorous response from audiences. The portrayal of chimpanzees in unnatural, human-like situations may have a negative effect on the public's understanding of their endangered status in the wild while making them appear as suitable pets. Alternatively, media content that elicits a positive emotional response toward chimpanzees may increase the public's commitment to chimpanzee conservation. To test these competing hypotheses, participants (n = 165) watched a series of commercials in an experiment framed as a marketing study. Imbedded within the same series of commercials was one of three chimpanzee videos. Participants either watched 1) a chimpanzee conservation commercial, 2) commercials containing "entertainment" chimpanzees or 3) control footage of the natural behavior of wild chimpanzees. Results from a post-viewing questionnaire reveal that participants who watched the conservation message understood that chimpanzees were endangered and unsuitable as pets at higher levels than those viewing the control footage. Meanwhile participants watching commercials with entertainment chimpanzees showed a decrease in understanding relative to those watching the control footage. In addition, when participants were given the opportunity to donate part of their earnings from the experiment to a conservation charity, donations were least frequent in the group watching commercials with entertainment chimpanzees. Control questions show that participants did not detect the purpose of the study. These results firmly support the hypothesis that use of entertainment chimpanzees in the popular media negatively distorts the public's perception and hinders chimpanzee conservation efforts.
Resumo:
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.
Resumo:
Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA) historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal) hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1) this mechanism can produce spontaneous divergence of local elevation; 2) divergent and homogenous states can exhibit global bi-stability; and 3) feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.
Resumo:
Dopamine is a key neuromodulatory transmitter in the brain. It acts through dopamine receptors to affect changes in neural activity, gene expression, and behavior. In songbirds, dopamine is released into the striatal song nucleus Area X, and the levels depend on social contexts of undirected and directed singing. This differential release is associated with differential expression of activity-dependent genes, such as egr1 (avian zenk), which in mammalian brain are modulated by dopamine receptors. Here we cloned from zebra finch brain cDNAs of all avian dopamine receptors: the D1 (D1A, D1B, D1D) and D2 (D2, D3, D4) families. Comparative sequence analyses of predicted proteins revealed expected phylogenetic relationships, in which the D1 family exists as single exon and the D2 family exists as spliced exon genes. In both zebra finch and chicken, the D1A, D1B, and D2 receptors were highly expressed in the striatum, the D1D and D3 throughout the pallium and within the mesopallium, respectively, and the D4 mainly in the cerebellum. Furthermore, within the zebra finch, all receptors, except for D4, showed differential expression in song nuclei relative to the surrounding regions and developmentally regulated expression that decreased for most receptors during the sensory acquisition and sensorimotor phases of song learning. Within Area X, half of the cells expressed both D1A and D2 receptors, and a higher proportion of the D1A-only-containing neurons expressed egr1 during undirected but not during directed singing. Our findings are consistent with hypotheses that dopamine receptors may be involved in song development and social context-dependent behaviors.
Resumo:
Previous functional neuroimaging studies of temporal-order memory have investigated memory for laboratory stimuli that are causally unrelated and poor in sensory detail. In contrast, the present functional magnetic resonance imaging (fMRI) study investigated temporal-order memory for autobiographical events that were causally interconnected and rich in sensory detail. Participants took photographs at many campus locations over a period of several hours, and the following day they were scanned while making temporal-order judgments to pairs of photographs from different locations. By manipulating the temporal lag between the two locations in each trial, we compared the neural correlates associated with reconstruction processes, which we hypothesized depended on recollection and contribute mainly to short lags, and distance processes, which we hypothesized to depend on familiarity and contribute mainly to longer lags. Consistent with our hypotheses, parametric fMRI analyses linked shorter lags to activations in regions previously associated with recollection (left prefrontal, parahippocampal, precuneus, and visual cortices), and longer lags with regions previously associated with familiarity (right prefrontal cortex). The hemispheric asymmetry in prefrontal cortex activity fits very well with evidence and theories regarding the contributions of the left versus right prefrontal cortex to memory (recollection vs. familiarity processes) and cognition (systematic vs. heuristic processes). In sum, using a novel photo-paradigm, this study provided the first evidence regarding the neural correlates of temporal-order for autobiographical events.
Resumo:
PREMISE OF THE STUDY: We investigated the origins of 252 Southern Appalachian woody species representing 158 clades to analyze larger patterns of biogeographic connectivity around the northern hemisphere. We tested biogeographic hypotheses regarding the timing of species disjunctions to eastern Asia and among areas of North America. METHODS: We delimited species into biogeographically informative clades, compiled sister-area data, and generated graphic representations of area connections across clades. We calculated taxon diversity within clades and plotted divergence times. KEY RESULTS: Of the total taxon diversity, 45% were distributed among 25 North American endemic clades. Sister taxa within eastern North America and eastern Asia were proportionally equal in frequency, accounting for over 50% of the sister-area connections. At increasing phylogenetic depth, connections to the Old World dominated. Divergence times for 65 clades with intercontinental disjunctions were continuous, whereas 11 intracontinental disjunctions to western North America and nine to eastern Mexico were temporally congruent. CONCLUSIONS: Over one third of the clades have likely undergone speciation within the region of eastern North America. The biogeographic pattern for the region is asymmetric, consisting of mostly mixed-aged, low-diversity clades connecting to the Old World, and a minority of New World clades. Divergence time data suggest that climate change in the Late Miocene to Early Pliocene generated disjunct patterns within North America. Continuous splitting times during the last 45 million years support the hypothesis that widespread distributions formed repeatedly during favorable periods, with serial cooling trends producing pseudocongruent area disjunctions between eastern North America and eastern Asia.
Resumo:
Insulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.