2 resultados para homoclinic chaos
em Duke University
Resumo:
We study an optoelectronic time-delay oscillator that displays high-speed chaotic behavior with a flat, broad power spectrum. The chaotic state coexists with a linearly stable fixed point, which, when subjected to a finite-amplitude perturbation, loses stability initially via a periodic train of ultrafast pulses. We derive approximate mappings that do an excellent job of capturing the observed instability. The oscillator provides a simple device for fundamental studies of time-delay dynamical systems and can be used as a building block for ultrawide-band sensor networks.
Resumo:
This paper investigates the static and dynamic characteristics of the semi-elliptical rocking disk on which a pendulum pinned. This coupled system’s response is also analyzed analytically and numerically when a vertical harmonic excitation is applied to the bottom of the rocking disk. Lagrange’s Equation is used to derive the motion equations of the disk-pendulum coupled system. The second derivative test for the system’s potential energy shows how the location of the pendulum’s pivotal point affects the number and stability of equilibria, and the change of location presents different bifurcation diagrams for different geometries of the rocking disk. For both vertically excited and unforced cases, the coupled system shows chaos easily, but the proper chosen parameters can still help the system reach and keep the steady state. For the steady state of the vertically excited rocking disk without a pendulum, the variation of the excitation’s amplitude and frequency result in the hysteresis for the amplitude of the response. When a pendulum is pinned on the rocking disk, three major categories of steady states are presently in the numerical way.