6 resultados para high-order upwind schemes
em Duke University
Resumo:
The binary A(8)B phase (prototype Pt(8)Ti) has been experimentally observed in 11 systems. A high-throughput search over all the binary transition intermetallics, however, reveals 59 occurrences of the A(8)B phase: Au(8)Zn(dagger), Cd(8)Sc(dagger), Cu(8)Ni(dagger), Cu(8)Zn(dagger), Hg(8)La, Ir(8)Os(dagger), Ir(8)Re, Ir(8)Ru(dagger), Ir(8)Tc, Ir(8)W(dagger), Nb(8)Os(dagger), Nb(8)Rh(dagger), Nb(8)Ru(dagger), Nb(8)Ta(dagger), Ni(8)Fe, Ni(8)Mo(dagger)*, Ni(8)Nb(dagger)*, Ni(8)Ta*, Ni(8)V*, Ni(8)W, Pd(8)Al(dagger), Pd(8)Fe, Pd(8)Hf, Pd(8)Mn, Pd(8)Mo*, Pd(8)Nb, Pd(8)Sc, Pd(8)Ta, Pd(8)Ti, Pd(8)V*, Pd(8)W*, Pd(8)Zn, Pd(8)Zr, Pt(8)Al(dagger), Pt(8)Cr*, Pt(8)Hf, Pt(8)Mn, Pt(8)Mo, Pt(8)Nb, Pt(8)Rh(dagger), Pt(8)Sc, Pt(8)Ta, Pt(8)Ti*, Pt(8)V*, Pt(8)W, Pt(8)Zr*, Rh(8)Mo, Rh(8)W, Ta(8)Pd, Ta(8)Pt, Ta(8)Rh, V(8)Cr(dagger), V(8)Fe(dagger), V(8)Ir(dagger), V(8)Ni(dagger), V(8)Pd, V(8)Pt, V(8)Rh, and V(8)Ru(dagger) ((dagger) = metastable, * = experimentally observed). This is surprising for the wealth of new occurrences that are predicted, especially in well-characterized systems (e.g., Cu-Zn). By verifying all experimental results while offering additional predictions, our study serves as a striking demonstration of the power of the high-throughput approach. The practicality of the method is demonstrated in the Rh-W system. A cluster-expansion-based Monte Carlo model reveals a relatively high order-disorder transition temperature.
A New Method for Modeling Free Surface Flows and Fluid-structure Interaction with Ocean Applications
Resumo:
The computational modeling of ocean waves and ocean-faring devices poses numerous challenges. Among these are the need to stably and accurately represent both the fluid-fluid interface between water and air as well as the fluid-structure interfaces arising between solid devices and one or more fluids. As techniques are developed to stably and accurately balance the interactions between fluid and structural solvers at these boundaries, a similarly pressing challenge is the development of algorithms that are massively scalable and capable of performing large-scale three-dimensional simulations on reasonable time scales. This dissertation introduces two separate methods for approaching this problem, with the first focusing on the development of sophisticated fluid-fluid interface representations and the second focusing primarily on scalability and extensibility to higher-order methods.
We begin by introducing the narrow-band gradient-augmented level set method (GALSM) for incompressible multiphase Navier-Stokes flow. This is the first use of the high-order GALSM for a fluid flow application, and its reliability and accuracy in modeling ocean environments is tested extensively. The method demonstrates numerous advantages over the traditional level set method, among these a heightened conservation of fluid volume and the representation of subgrid structures.
Next, we present a finite-volume algorithm for solving the incompressible Euler equations in two and three dimensions in the presence of a flow-driven free surface and a dynamic rigid body. In this development, the chief concerns are efficiency, scalability, and extensibility (to higher-order and truly conservative methods). These priorities informed a number of important choices: The air phase is substituted by a pressure boundary condition in order to greatly reduce the size of the computational domain, a cut-cell finite-volume approach is chosen in order to minimize fluid volume loss and open the door to higher-order methods, and adaptive mesh refinement (AMR) is employed to focus computational effort and make large-scale 3D simulations possible. This algorithm is shown to produce robust and accurate results that are well-suited for the study of ocean waves and the development of wave energy conversion (WEC) devices.
Resumo:
"Push-pull" chromophores based on extended pi-electron systems have been designed to exhibit exceptionally large molecular hyperpolarizabilities. We have engineered an amphiphilic four-helix bundle peptide to vectorially incorporate such hyperpolarizable chromophores having a metalloporphyrin moiety, with high specificity into the interior core of the bundle. The amphiphilic exterior of the bundle facilitates the formation of densely packed monolayer ensembles of the vectorially oriented peptide-chromophore complexes at the liquid-gas interface. Chemical specificity designed into the ends of the bundle facilitates the subsequent covalent attachment of these monolayer ensembles onto the surface of an inorganic substrate. In this article, we describe the structural characterization of these monolayer ensembles at each stage of their fabrication for one such peptide-chromophore complex designated as AP0-RuPZn. In the accompanying article, we describe the characterization of their macroscopic nonlinear optical properties.
Resumo:
We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.
Resumo:
The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).
The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.
In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.
The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.