3 resultados para high speed spindle block

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simultaneous measurements of high-altitude optical emissions and magnetic fields produced by sprite-associated lightning discharges enable a close examination of the link between low-altitude lightning processes and high-altitude sprite processes. We report results of the coordinated analysis of high-speed sprite video and wideband magnetic field measurements recorded simultaneously at Yucca Ridge Field Station and Duke University. From June to August 2005, sprites were detected following 67 lightning strokes, all of which had positive polarity. Our data showed that 46% of the 83 discrete sprite events in these sequences initiated more than 10 ms after the lightning return stroke, and we focus on these delayed sprites in this work. All delayed sprites were preceded by continuing current moments that averaged at least 11 kA km between the return stroke and sprites. The total lightning charge moment change at sprite initiation varied from 600 to 18,600 C km, and the minimum value to initiate long-delayed sprites ranged from 600 for 15 ms delay to 2000 C km for more than 120 ms delay. We numerically simulated electric fields at altitudes above these lightning discharges and found that the maximum normalized electric fields are essentially the same as fields that produce short-delayed sprites. Both estimated and simulation-predicted sprite initiation altitudes indicate that long-delayed sprites generally initiate around 5 km lower than short-delayed sprites. The simulation results also reveal that slow (5-20 ms) intensifications in continuing current can play a major role in initiating delayed sprites. Copyright 2008 by the American Geophysical Union.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present fast functional photoacoustic microscopy (PAM) for three-dimensional high-resolution, high-speed imaging of the mouse brain, complementary to other imaging modalities. We implemented a single-wavelength pulse-width-based method with a one-dimensional imaging rate of 100 kHz to image blood oxygenation with capillary-level resolution. We applied PAM to image the vascular morphology, blood oxygenation, blood flow and oxygen metabolism in both resting and stimulated states in the mouse brain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study an optoelectronic time-delay oscillator that displays high-speed chaotic behavior with a flat, broad power spectrum. The chaotic state coexists with a linearly stable fixed point, which, when subjected to a finite-amplitude perturbation, loses stability initially via a periodic train of ultrafast pulses. We derive approximate mappings that do an excellent job of capturing the observed instability. The oscillator provides a simple device for fundamental studies of time-delay dynamical systems and can be used as a building block for ultrawide-band sensor networks.