3 resultados para high resolution aerial image
em Duke University
Resumo:
Preclinical imaging has a critical role in phenotyping, in drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review high-resolution computed tomography (CT) also known as micro-CT for small-animal imaging. We present the principles, the technologies, the image quality parameters, and the types of applications. We show that micro-CT can be used to provide not only morphological but also functional information such as cardiac function or vascular permeability. Another way in which micro-CT can be used in the study of both function and anatomy is by combining it with other imaging modalities, such as positron emission tomography or single-photon emission tomography. Compared to other modalities, micro-CT imaging is usually regarded as being able to provide higher throughput at lower cost and higher resolution. The limitations are usually associated with the relatively poor contrast mechanisms and the radiation damage, although the use of novel nanoparticle-based contrast agents and careful design of studies can address these limitations.
Resumo:
DNaseI footprinting is an established assay for identifying transcription factor (TF)-DNA interactions with single base pair resolution. High-throughput DNase-seq assays have recently been used to detect in vivo DNase footprints across the genome. Multiple computational approaches have been developed to identify DNase-seq footprints as predictors of TF binding. However, recent studies have pointed to a substantial cleavage bias of DNase and its negative impact on predictive performance of footprinting. To assess the potential for using DNase-seq to identify individual binding sites, we performed DNase-seq on deproteinized genomic DNA and determined sequence cleavage bias. This allowed us to build bias corrected and TF-specific footprint models. The predictive performance of these models demonstrated that predicted footprints corresponded to high-confidence TF-DNA interactions. DNase-seq footprints were absent under a fraction of ChIP-seq peaks, which we show to be indicative of weaker binding, indirect TF-DNA interactions or possible ChIP artifacts. The modeling approach was also able to detect variation in the consensus motifs that TFs bind to. Finally, cell type specific footprints were detected within DNase hypersensitive sites that are present in multiple cell types, further supporting that footprints can identify changes in TF binding that are not detectable using other strategies.