11 resultados para head movement

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The lateral septum is associated with the regulation of innate behavior, motivation, and locomotion. Its complex interconnections with cognitive and affective regions such as the hippocampus, hypothalamus, and medial septum have made it an attractive region for studying how motivation regulates behavior in context-specific settings. This GABAergic brain region’s main output is the lateral hypothalamus, which provides downstream signaling of motor commands. Even though stimulation of lateral septum projections to the hypothalamus have shown to decrease running speed in free behaving mice, characterizing movement kinematics due to LS activation has not been studied. GABAergic medium spiny neurons of the lateral septum were selectively activated through the use of optogenetic techniques in transgenic mice. Photostimulation of the lateral septum at theta frequencies caused a non-significant decrease in head and back speed. 3D motion analysis of body movement under photostimulation was quantified, revealing a slow, linear decrease of body speed as photostimulation progressed. These results support the role of lateral septum activation in movement regulation and shed light on the specific manner in which stimulation of the LS gradually decreases movement speed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: The superior colliculus (SC) has been shown to play a crucial role in the initiation and coordination of eye- and head-movements. The knowledge about the function of this structure is mainly based on single-unit recordings in animals with relatively few neuroimaging studies investigating eye-movement related brain activity in humans. METHODOLOGY/PRINCIPAL FINDINGS: The present study employed high-field (7 Tesla) functional magnetic resonance imaging (fMRI) to investigate SC responses during endogenously cued saccades in humans. In response to centrally presented instructional cues, subjects either performed saccades away from (centrifugal) or towards (centripetal) the center of straight gaze or maintained fixation at the center position. Compared to central fixation, the execution of saccades elicited hemodynamic activity within a network of cortical and subcortical areas that included the SC, lateral geniculate nucleus (LGN), occipital cortex, striatum, and the pulvinar. CONCLUSIONS/SIGNIFICANCE: Activity in the SC was enhanced contralateral to the direction of the saccade (i.e., greater activity in the right as compared to left SC during leftward saccades and vice versa) during both centrifugal and centripetal saccades, thereby demonstrating that the contralateral predominance for saccade execution that has been shown to exist in animals is also present in the human SC. In addition, centrifugal saccades elicited greater activity in the SC than did centripetal saccades, while also being accompanied by an enhanced deactivation within the prefrontal default-mode network. This pattern of brain activity might reflect the reduced processing effort required to move the eyes toward as compared to away from the center of straight gaze, a position that might serve as a spatial baseline in which the retinotopic and craniotopic reference frames are aligned.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From tendencies to reduce the Underground Railroad to the imperative "follow the north star" to the iconic images of Ruby Bridges' 1960 "step forward" on the stairs of William Frantz Elementary School, America prefers to picture freedom as an upwardly mobile development. This preoccupation with the subtractive and linear force of development makes it hard to hear the palpable steps of so many truant children marching in the Movement and renders illegible the nonlinear movements of minors in the Underground. Yet a black fugitive hugging a tree, a white boy walking alone in a field, or even pieces of a discarded raft floating downstream like remnants of child's play are constitutive gestures of the Underground's networks of care and escape. Responding to 19th-century Americanists and cultural studies scholars' important illumination of the child as central to national narratives of development and freedom, "Minor Moves" reads major literary narratives not for the child and development but for the fugitive trace of minor and growth.

In four chapters, I trace the physical gestures of Nathaniel Hawthorne's Pearl, Harriet Beecher Stowe's Topsy, Harriet Wilson's Frado, and Mark Twain's Huck against the historical backdrop of the Fugitive Slave Act and the passing of the first compulsory education bills that made truancy illegal. I ask how, within a discourse of independence that fails to imagine any serious movements in the minor, we might understand the depictions of moving children as interrupting a U.S. preoccupation with normative development and recognize in them the emergence of an alternative imaginary. To attend to the movement of the minor is to attend to what the discursive order of a development-centered imaginary deems inconsequential and what its grammar can render only as mistakes. Engaging the insights of performance studies, I regard what these narratives depict as childish missteps (Topsy's spins, Frado's climbing the roof) as dances that trouble the narrative's discursive order. At the same time, drawing upon the observations of black studies and literary theory, I take note of the pressure these "minor moves" put on the literal grammar of the text (Stowe's run-on sentences and Hawthorne's shaky subject-verb agreements). I regard these ungrammatical moves as poetic ruptures from which emerges an alternative and prior force of the imaginary at work in these narratives--a force I call "growth."

Reading these "minor moves" holds open the possibility of thinking about a generative association between blackness and childishness, one that neither supports racist ideas of biological inferiority nor mandates in the name of political uplift the subsequent repudiation of childishness. I argue that recognizing the fugitive force of growth indicated in the interplay between the conceptual and grammatical disjunctures of these minor moves opens a deeper understanding of agency and dependency that exceeds notions of arrested development and social death. For once we interrupt the desire to picture development (which is to say the desire to picture), dependency is no longer a state (of social death or arrested development) of what does not belong, but rather it is what Édouard Glissant might have called a "departure" (from "be[ing] a single being"). Topsy's hard-to-see pick-pocketing and Pearl's running amok with brown men in the market are not moves out of dependency but indeed social turns (a dance) by way of dependency. Dependent, moving and ungrammatical, the growth evidenced in these childish ruptures enables different stories about slavery, freedom, and childishness--ones that do not necessitate a repudiation of childishness in the name of freedom, but recognize in such minor moves a fugitive way out.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vocal learning is a critical behavioral substrate for spoken human language. It is a rare trait found in three distantly related groups of birds-songbirds, hummingbirds, and parrots. These avian groups have remarkably similar systems of cerebral vocal nuclei for the control of learned vocalizations that are not found in their more closely related vocal non-learning relatives. These findings led to the hypothesis that brain pathways for vocal learning in different groups evolved independently from a common ancestor but under pre-existing constraints. Here, we suggest one constraint, a pre-existing system for movement control. Using behavioral molecular mapping, we discovered that in songbirds, parrots, and hummingbirds, all cerebral vocal learning nuclei are adjacent to discrete brain areas active during limb and body movements. Similar to the relationships between vocal nuclei activation and singing, activation in the adjacent areas correlated with the amount of movement performed and was independent of auditory and visual input. These same movement-associated brain areas were also present in female songbirds that do not learn vocalizations and have atrophied cerebral vocal nuclei, and in ring doves that are vocal non-learners and do not have cerebral vocal nuclei. A compilation of previous neural tracing experiments in songbirds suggests that the movement-associated areas are connected in a network that is in parallel with the adjacent vocal learning system. This study is the first global mapping that we are aware for movement-associated areas of the avian cerebrum and it indicates that brain systems that control vocal learning in distantly related birds are directly adjacent to brain systems involved in movement control. Based upon these findings, we propose a motor theory for the origin of vocal learning, this being that the brain areas specialized for vocal learning in vocal learners evolved as a specialization of a pre-existing motor pathway that controls movement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To review the experience at a single institution with motor evoked potential (MEP) monitoring during intracranial aneurysm surgery to determine the incidence of unacceptable movement. METHODS: Neurophysiology event logs and anesthetic records from 220 craniotomies for aneurysm clipping were reviewed for unacceptable patient movement or reason for cessation of MEPs. Muscle relaxants were not given after intubation. Transcranial MEPs were recorded from bilateral abductor hallucis and abductor pollicis muscles. MEP stimulus intensity was increased up to 500 V until evoked potential responses were detectable. RESULTS: Out of 220 patients, 7 (3.2%) exhibited unacceptable movement with MEP stimulation-2 had nociception-induced movement and 5 had excessive field movement. In all but one case, MEP monitoring could be resumed, yielding a 99.5% monitoring rate. CONCLUSIONS: With the anesthetic and monitoring regimen, the authors were able to record MEPs of the upper and lower extremities in all patients and found only 3.2% demonstrated unacceptable movement. With a suitable anesthetic technique, MEP monitoring in the upper and lower extremities appears to be feasible in most patients and should not be withheld because of concern for movement during neurovascular surgery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Epigenetic alterations have been implicated in the pathogenesis of solid tumors, however, proto-oncogenes activated by promoter demethylation have been sporadically reported. We used an integrative method to analyze expression in primary head and neck squamous cell carcinoma (HNSCC) and pharmacologically demethylated cell lines to identify aberrantly demethylated and expressed candidate proto-oncogenes and cancer testes antigens in HNSCC. METHODOLOGY/PRINCIPAL FINDINGS: We noted coordinated promoter demethylation and simultaneous transcriptional upregulation of proto-oncogene candidates with promoter homology, and phylogenetic footprinting of these promoters demonstrated potential recognition sites for the transcription factor BORIS. Aberrant BORIS expression correlated with upregulation of candidate proto-oncogenes in multiple human malignancies including primary non-small cell lung cancers and HNSCC, induced coordinated proto-oncogene specific promoter demethylation and expression in non-tumorigenic cells, and transformed NIH3T3 cells. CONCLUSIONS/SIGNIFICANCE: Coordinated, epigenetic unmasking of multiple genes with growth promoting activity occurs in aerodigestive cancers, and BORIS is implicated in the coordinated promoter demethylation and reactivation of epigenetically silenced genes in human cancers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cognitive control of behavior was long considered to be centralized in cerebral cortex. More recently, subcortical structures such as cerebellum and basal ganglia have been implicated in cognitive functions as well. The fact that subcortico-cortical circuits for the control of movement involve the thalamus prompts the notion that activity in movement-related thalamus may also reflect elements of cognitive behavior. Yet this hypothesis has rarely been investigated. Using the pathways linking cerebellum to cerebral cortex via the thalamus as a template, we review evidence that the motor thalamus, together with movement-related central thalamus have the requisite connectivity and activity to mediate cognitive aspects of movement control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal locomotion causes head rotations, which are detected by the semicircular canals of the inner ear. Morphologic features of the canals influence rotational sensitivity, and so it is hypothesized that locomotion and canal morphology are functionally related. Most prior research has compared subjective assessments of animal "agility" with a single determinant of rotational sensitivity: the mean canal radius of curvature (R). In fact, the paired variables of R and body mass are correlated with agility and have been used to infer locomotion in extinct species. To refine models of canal functional morphology and to improve locomotor inferences for extinct species, we compare 3D vector measurements of head rotation during locomotion with 3D vector measures of canal sensitivity. Contrary to the predictions of conventional models that are based upon R, we find that axes of rapid head rotation are not aligned with axes of either high or low sensitivity. Instead, animals with fast head rotations have similar sensitivities in all directions, which they achieve by orienting the three canals of each ear orthogonally (i.e., along planes at 90° angles to one another). The extent to which the canal configuration approaches orthogonality is correlated with rotational head speed independent of body mass and phylogeny, whereas R is not.