6 resultados para group model building
em Duke University
Resumo:
We consider the problem of variable selection in regression modeling in high-dimensional spaces where there is known structure among the covariates. This is an unconventional variable selection problem for two reasons: (1) The dimension of the covariate space is comparable, and often much larger, than the number of subjects in the study, and (2) the covariate space is highly structured, and in some cases it is desirable to incorporate this structural information in to the model building process. We approach this problem through the Bayesian variable selection framework, where we assume that the covariates lie on an undirected graph and formulate an Ising prior on the model space for incorporating structural information. Certain computational and statistical problems arise that are unique to such high-dimensional, structured settings, the most interesting being the phenomenon of phase transitions. We propose theoretical and computational schemes to mitigate these problems. We illustrate our methods on two different graph structures: the linear chain and the regular graph of degree k. Finally, we use our methods to study a specific application in genomics: the modeling of transcription factor binding sites in DNA sequences. © 2010 American Statistical Association.
Resumo:
Introduction: Traditional medicines are one of the most important means of achieving total health care coverage globally, and their importance in Tanzania extends beyond the impoverished rural areas. Their use remains high even in urban settings among the educated middle and upper classes. They are a critical component healthcare in Tanzania, but they also can have harmful side effects. Therefore we sought to understand the decision-making and reasoning processes by building an explanatory model for the use of traditional medicines in Tanzania.
Methods: We conducted a mixed-methods study between December 2013 and June 2014 in the Kilimanjaro Region of Tanzania. Using purposive sampling methods, we conducted focus group discussions (FGDs) and in-depth interviews of key informants, and the qualitative data were analyzed using an inductive Framework Method. A structured survey was created, piloted, and then administered it to a random sample of adults. We reported upon the reliability and validity of the structured survey, and we used triangulation from multiple sources to synthesize the qualitative and quantitative data.
Results: A total of five FGDs composed of 59 participants and 27 in-depth interviews were conducted in total. 16 of the in-depth interviews were with self-described traditional practitioners or herbal vendors. We identified five major thematic categories that relate to the decision to use traditional medicines in Kilimanjaro: healthcare delivery, disease understanding, credibility of the traditional practices, health status, and strong cultural beliefs.
A total of 473 participants (24.1% male) completed the structured survey. The most common reasons for taking traditional medicines were that they are more affordable (14%, 12.0-16.0), failure of hospital medicines (13%, 11.1-15.0), they work better (12%, 10.7-14.4), they are easier
to obtain (11%, 9.48-13.1), they are found naturally or free (8%, 6.56-9.68), hospital medicines have too many chemical (8%, 6.33-9.40), and they have fewer side effects (8%, 6.25-9.30). The most common uses of traditional medicines were for symptomatic conditions (42%), chronic diseases (14%), reproductive problems (11%), and malaria and febrile illnesses (10%). Participants currently taking hospital medicines for chronic conditions were nearly twice as likely to report traditional medicines usage in the past year (RR 1.97, p=0.05).
Conclusions: We built broad explanatory model for the use of traditional medicines in Kilimanjaro. The use of traditional medicines is not limited to rural or low socioeconomic populations and concurrent use of traditional medicines and biomedicine is high with frequent ethnomedical doctor shopping. Our model provides a working framework for understanding the complex interactions between biomedicine and traditional medicine. Future disease management and treatment programs will benefit from this understanding, and it can lead to synergistic policies with more effective implementation.
Resumo:
Interleukin-1 beta (IL1β) is a proinflammatory cytokine that mediates arthritic pathologies. Our objectives were to evaluate pain and limb dysfunction resulting from IL1β over-expression in the rat knee and to investigate the ability of local IL1 receptor antagonist (IL1Ra) delivery to reverse-associated pathology. IL1β over-expression was induced in the right knees of 30 Wistar rats via intra-articular injection of rat fibroblasts retrovirally infected with human IL1β cDNA. A subset of animals received a 30 µl intra-articular injection of saline or human IL1Ra on day 1 after cell delivery (0.65 µg/µl hIL1Ra, n = 7 per group). Joint swelling, gait, and sensitivity were investigated over 1 week. On day 8, animals were sacrificed and joints were collected for histological evaluation. Joint inflammation and elevated levels of endogenous IL1β were observed in knees receiving IL1β-infected fibroblasts. Asymmetric gaits favoring the affected limb and heightened mechanical sensitivity (allodynia) reflected a unilateral pathology. Histopathology revealed cartilage loss on the femoral groove and condyle of affected joints. Intra-articular IL1Ra injection failed to restore gait and sensitivity to preoperative levels and did not reduce cartilage degeneration observed in histopathology. Joint swelling and degeneration subsequent to IL1β over-expression is associated limb hypersensitivity and gait compensation. Intra-articular IL1Ra delivery did not result in marked improvement for this model; this may be driven by rapid clearance of administered IL1Ra from the joint space. These results motivate work to further investigate the behavioral consequences of monoarticular arthritis and sustained release drug delivery strategies for the joint space.
Resumo:
BACKGROUND: Patients with chronic hepatitis C virus (HCV) infection have high rates of alcohol consumption, which is associated with progression of fibrosis and lower response rates to HCV treatment. AIMS: This prospective cohort study examined the feasibility of a 24-week integrated alcohol and medical treatment to HCV-infected patients. METHODS: Patients were recruited from a hepatology clinic if they had an Alcohol Use Disorders Identification Test score >4 for women and >8 for men, suggesting hazardous alcohol consumption. The integrated model included patients receiving medical care and alcohol treatment within the same clinic. Alcohol treatment consisted of 6 months of group and individual therapy from an addictions specialist and consultation from a study team psychiatrist as needed. RESULTS: Sixty patients were initially enrolled, and 53 patients participated in treatment. The primary endpoint was the Addiction Severity Index (ASI) alcohol composite scores, which significantly decreased by 0.105 (41.7% reduction) between 0 and 3 months (P < 0.01) and by 0.128 (50.6% reduction) between 0 and 6 months (P < 0.01) after adjusting for covariates. Alcohol abstinence was reported by 40% of patients at 3 months and 44% at 6 months. Patients who did not become alcohol abstinent had reductions in their ASI alcohol composite scores from 0.298 at baseline to 0.219 (26.8% reduction) at 6 months (P = 0.08). CONCLUSION: This study demonstrated that an integrated model of alcohol treatment and medical care could be successfully implemented in a hepatology clinic with significant favorable impact on alcohol use and abstinence among patients with chronic HCV.
Resumo:
We estimate a carbon mitigation cost curve for the U.S. commercial sector based on econometric estimation of the responsiveness of fuel demand and equipment choices to energy price changes. The model econometrically estimates fuel demand conditional on fuel choice, which is characterized by a multinomial logit model. Separate estimation of end uses (e.g., heating, cooking) using the U.S. Commercial Buildings Energy Consumption Survey allows for exceptionally detailed estimation of price responsiveness disaggregated by end use and fuel type. We then construct aggregate long-run elasticities, by fuel type, through a series of simulations; own-price elasticities range from -0.9 for district heat services to -2.9 for fuel oil. The simulations form the basis of a marginal cost curve for carbon mitigation, which suggests that a price of $20 per ton of carbon would result in an 8% reduction in commercial carbon emissions, and a price of $100 per ton would result in a 28% reduction. © 2008 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: To compare the predictive performance and potential clinical usefulness of risk calculators of the European Randomized Study of Screening for Prostate Cancer (ERSPC RC) with and without information on prostate volume. METHODS: We studied 6 cohorts (5 European and 1 US) with a total of 15,300 men, all biopsied and with pre-biopsy TRUS measurements of prostate volume. Volume was categorized into 3 categories (25, 40, and 60 cc), to reflect use of digital rectal examination (DRE) for volume assessment. Risks of prostate cancer were calculated according to a ERSPC DRE-based RC (including PSA, DRE, prior biopsy, and prostate volume) and a PSA + DRE model (including PSA, DRE, and prior biopsy). Missing data on prostate volume were completed by single imputation. Risk predictions were evaluated with respect to calibration (graphically), discrimination (AUC curve), and clinical usefulness (net benefit, graphically assessed in decision curves). RESULTS: The AUCs of the ERSPC DRE-based RC ranged from 0.61 to 0.77 and were substantially larger than the AUCs of a model based on only PSA + DRE (ranging from 0.56 to 0.72) in each of the 6 cohorts. The ERSPC DRE-based RC provided net benefit over performing a prostate biopsy on the basis of PSA and DRE outcome in five of the six cohorts. CONCLUSIONS: Identifying men at increased risk for having a biopsy detectable prostate cancer should consider multiple factors, including an estimate of prostate volume.