4 resultados para glutaredoxins, disease resistance, flower development, glutathionylation

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Starvation during early development can have lasting effects that influence organismal fitness and disease risk. We characterized the long-term phenotypic consequences of starvation during early larval development in Caenorhabditis elegans to determine potential fitness effects and develop it as a model for mechanistic studies. We varied the amount of time that larvae were developmentally arrested by starvation after hatching ("L1 arrest"). Worms recovering from extended starvation grew slowly, taking longer to become reproductive, and were smaller as adults. Fecundity was also reduced, with the smallest individuals most severely affected. Feeding behavior was impaired, possibly contributing to deficits in growth and reproduction. Previously starved larvae were more sensitive to subsequent starvation, suggesting decreased fitness even in poor conditions. We discovered that smaller larvae are more resistant to heat, but this correlation does not require passage through L1 arrest. The progeny of starved animals were also adversely affected: Embryo quality was diminished, incidence of males was increased, progeny were smaller, and their brood size was reduced. However, the progeny and grandprogeny of starved larvae were more resistant to starvation. In addition, the progeny, grandprogeny, and great-grandprogeny were more resistant to heat, suggesting epigenetic inheritance of acquired resistance to starvation and heat. Notably, such resistance was inherited exclusively from individuals most severely affected by starvation in the first generation, suggesting an evolutionary bet-hedging strategy. In summary, our results demonstrate that starvation affects a variety of life-history traits in the exposed animals and their descendants, some presumably reflecting fitness costs but others potentially adaptive.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cryptococcosis is a global invasive mycosis associated with significant morbidity and mortality. These guidelines for its management have been built on the previous Infectious Diseases Society of America guidelines from 2000 and include new sections. There is a discussion of the management of cryptococcal meningoencephalitis in 3 risk groups: (1) human immunodeficiency virus (HIV)-infected individuals, (2) organ transplant recipients, and (3) non-HIV-infected and nontransplant hosts. There are specific recommendations for other unique risk populations, such as children, pregnant women, persons in resource-limited environments, and those with Cryptococcus gattii infection. Recommendations for management also include other sites of infection, including strategies for pulmonary cryptococcosis. Emphasis has been placed on potential complications in management of cryptococcal infection, including increased intracranial pressure, immune reconstitution inflammatory syndrome (IRIS), drug resistance, and cryptococcomas. Three key management principles have been articulated: (1) induction therapy for meningoencephalitis using fungicidal regimens, such as a polyene and flucytosine, followed by suppressive regimens using fluconazole; (2) importance of early recognition and treatment of increased intracranial pressure and/or IRIS; and (3) the use of lipid formulations of amphotericin B regimens in patients with renal impairment. Cryptococcosis remains a challenging management issue, with little new drug development or recent definitive studies. However, if the diagnosis is made early, if clinicians adhere to the basic principles of these guidelines, and if the underlying disease is controlled, then cryptococcosis can be managed successfully in the vast majority of patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Sickle Cell Disease (SCD) is a genetic hematological disorder that affects more than 7 million people globally (NHLBI, 2009). It is estimated that 50% of adults with SCD experience pain on most days, with 1/3 experiencing chronic pain daily (Smith et al., 2008). Persons with SCD also experience higher levels of pain catastrophizing (feelings of helplessness, pain rumination and magnification) than other chronic pain conditions, which is associated with increases in pain intensity, pain behavior, analgesic consumption, frequency and duration of hospital visits, and with reduced daily activities (Sullivan, Bishop, & Pivik, 1995; Keefe et al., 2000; Gil et al., 1992 & 1993). Therefore effective interventions are needed that can successfully be used manage pain and pain-related outcomes (e.g., pain catastrophizing) in persons with SCD. A review of the literature demonstrated limited information regarding the feasibility and efficacy of non-pharmacological approaches for pain in persons with SCD, finding an average effect size of .33 on pain reduction across measurable non-pharmacological studies. Second, a prospective study on persons with SCD that received care for a vaso-occlusive crisis (VOC; N = 95) found: (1) high levels of patient reported depression (29%) and anxiety (34%), and (2) that unemployment was significantly associated with increased frequency of acute care encounters and hospital admissions per person. Research suggests that one promising category of non-pharmacological interventions for managing both physical and affective components of pain are Mindfulness-based Interventions (MBIs; Thompson et al., 2010; Cox et al., 2013). The primary goal of this dissertation was thus to develop and test the feasibility, acceptability, and efficacy of a telephonic MBI for pain catastrophizing in persons with SCD and chronic pain.

Methods: First, a telephonic MBI was developed through an informal process that involved iterative feedback from patients, clinical experts in SCD and pain management, social workers, psychologists, and mindfulness clinicians. Through this process, relevant topics and skills were selected to adapt in each MBI session. Second, a pilot randomized controlled trial was conducted to test the feasibility, acceptability, and efficacy of the telephonic MBI for pain catastrophizing in persons with SCD and chronic pain. Acceptability and feasibility were determined by assessment of recruitment, attrition, dropout, and refusal rates (including refusal reasons), along with semi-structured interviews with nine randomly selected patients at the end of study. Participants completed assessments at baseline, Week 1, 3, and 6 to assess efficacy of the intervention on decreasing pain catastrophizing and other pain-related outcomes.

Results: A telephonic MBI is feasible and acceptable for persons with SCD and chronic pain. Seventy-eight patients with SCD and chronic pain were approached, and 76% (N = 60) were enrolled and randomized. The MBI attendance rate, approximately 57% of participants completing at least four mindfulness sessions, was deemed acceptable, and participants that received the telephonic MBI described it as acceptable, easy to access, and consume in post-intervention interviews. The amount of missing data was undesirable (MBI condition, 40%; control condition, 25%), but fell within the range of expected missing outcome data for a RCT with multiple follow-up assessments. Efficacy of the MBI on pain catastrophizing could not be determined due to small sample size and degree of missing data, but trajectory analyses conducted for the MBI condition only trended in the right direction and pain catastrophizing approached statistically significance.

Conclusion: Overall results showed that at telephonic group-based MBI is acceptable and feasible for persons with SCD and chronic pain. Though the study was not able to determine treatment efficacy nor powered to detect a statistically significant difference between conditions, participants (1) described the intervention as acceptable, and (2) the observed effect sizes for the MBI condition demonstrated large effects of the MBI on pain catastrophizing, mental health, and physical health. Replication of this MBI study with a larger sample size, active control group, and additional assessments at the end of each week (e.g., Week 1 through Week 6) is needed to determine treatment efficacy. Many lessons were learned that will guide the development of future studies including which MBI strategies were most helpful, methods to encourage continued participation, and how to improve data capture.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

B cell abnormalities contribute to the development and progress of autoimmune disease. Traditionally, the role of B cells in autoimmune disease was thought to be predominantly limited to the production of autoantibodies. Nevertheless, in addition to autoantibody production, B cells have other functions potentially relevant to autoimmunity. Such functions include antigen presentation to and activation of T cells, expression of costimulatory molecules and cytokine production. Recently, the ability of B cells to negatively regulate cellular immune responses and inflammation has been described and the concept of “regulatory B cells” has emerged. A variety of cytokines produced by regulatory B cell subsets have been reported with interleukin-10 (IL-10) being the most studied. IL-10-producing regulatory B cells predominantly localize within a rare CD1dhiCD5+ B cell subset in mice and the CD24hiCD27+ B cell subset in adult humans. This specific IL-10-producing subset of regulatory B cells have been named “B10 cells” to highlight that the regulatory function of these rare B cells is primarily mediated by IL-10, and to distinguish them from other regulatory B cell subsets that regulate immune responses through different mechanisms. B10 cells have been studies in a variety of animal models with autoimmune disease and clinical settings of human autoimmunity. There are many unsolved questions related to B10 cells including their surface phenotype, their origin and development in vivo, and their role in autoimmunity.

In Chapter 3 of this dissertation, the role of the B cell receptor (BCR) in B10 cell development is highlighted. First, the BCR repertoire of mouse peritoneal cavity B10 cells is examined by single cell sequencing; peritoneal cavity B10 cells have clonally diverse germline BCRs that are predominantly unmutated. Second, mouse B10 cells are shown to have higher frequencies of λ+ BCRs compared to non-B10 cells which may indicate the involvement of BCR light chain editing early in the process of B10 cell development in vivo. Third, human peripheral blood B10 cells are examined and are also found to express higher frequencies of λ chains compared to non-b10 cells. Therefore, B10 cell BCRs are clonally diverse and enriched for unmutated germline sequences and λ light chains.

In Chapter 4 of this dissertation, B10 cells are examined in the healthy developing human across the entire age range of infancy, childhood and adolescence, and in a large cohort of children with autoimmunity. The study of B10 cells in the developing human documents a massive transient expansion during middle childhood when up to 30% of blood B cells were competent to produce IL-10. The surface phenotype of pediatric B10 cells was variable and reflective of overall B cell development. B10 cells down-regulated CD4+ T cell interferon-gamma (IFN-γ) production through IL-10-dependent pathways and IFN-γ inhibited whereas interleukin-21 (IL-21) promoted B cell IL-10 competency in vitro. Children with autoimmunity had a contracted B10 cell compartment, along with increased IFN-γ and decreased IL-21 serum levels compared to age-matched healthy controls. The decreased B10 cell frequencies and numbers in children with autoimmunity may be partially explained by the differential regulation of B10 cell development by IFN-γ and IL-21 and alterations in serum cytokine levels. The age-related changes of the B10 cell compartment during normal human development provide new insights into immune tolerance mechanisms involved in inflammation and autoimmunity.

These studies collectively demonstrate that BCR signals are the most important early determinant of B10 cell development in vivo, that human B10 cells are not a surface phenotype defined developmental B cell subset but a functionally defined regulatory B cell subset that regulates CD4+ T IFN-γ production through IL-10-dependent pathways and that human B10 cell development can be regulated by soluble factors in vivo such as the cytokine milieu. The findings of these studies provide new insights into immune tolerance mechanisms involved in human autoimmunity and the potent effects of IL-21 on human B cell IL-10 competence in vitro open new horizons in the development of autologous B10 cell-based therapies as an approach to treat human autoimmune disease in the future.