5 resultados para geographical database
em Duke University
Resumo:
BACKGROUND: Outpatient palliative care, an evolving delivery model, seeks to improve continuity of care across settings and to increase access to services in hospice and palliative medicine (HPM). It can provide a critical bridge between inpatient palliative care and hospice, filling the gap in community-based supportive care for patients with advanced life-limiting illness. Low capacities for data collection and quantitative research in HPM have impeded assessment of the impact of outpatient palliative care. APPROACH: In North Carolina, a regional database for community-based palliative care has been created through a unique partnership between a HPM organization and academic medical center. This database flexibly uses information technology to collect patient data, entered at the point of care (e.g., home, inpatient hospice, assisted living facility, nursing home). HPM physicians and nurse practitioners collect data; data are transferred to an academic site that assists with analyses and data management. Reports to community-based sites, based on data they provide, create a better understanding of local care quality. CURRENT STATUS: The data system was developed and implemented over a 2-year period, starting with one community-based HPM site and expanding to four. Data collection methods were collaboratively created and refined. The database continues to grow. Analyses presented herein examine data from one site and encompass 2572 visits from 970 new patients, characterizing the population, symptom profiles, and change in symptoms after intervention. CONCLUSION: A collaborative regional approach to HPM data can support evaluation and improvement of palliative care quality at the local, aggregated, and statewide levels.
Resumo:
BACKGROUND: The incidence and epidemiology of invasive fungal infections (IFIs), a leading cause of death among hematopoeitic stem cell transplant (HSCT) recipients, are derived mainly from single-institution retrospective studies. METHODS: The Transplant Associated Infections Surveillance Network, a network of 23 US transplant centers, prospectively enrolled HSCT recipients with proven and probable IFIs occurring between March 2001 and March 2006. We collected denominator data on all HSCTs preformed at each site and clinical, diagnostic, and outcome information for each IFI case. To estimate trends in IFI, we calculated the 12-month cumulative incidence among 9 sequential subcohorts. RESULTS: We identified 983 IFIs among 875 HSCT recipients. The median age of the patients was 49 years; 60% were male. Invasive aspergillosis (43%), invasive candidiasis (28%), and zygomycosis (8%) were the most common IFIs. Fifty-nine percent and 61% of IFIs were recognized within 60 days of neutropenia and graft-versus-host disease, respectively. Median onset of candidiasis and aspergillosis after HSCT was 61 days and 99 days, respectively. Within a cohort of 16,200 HSCT recipients who received their first transplants between March 2001 and September 2005 and were followed up through March 2006, we identified 718 IFIs in 639 persons. Twelve-month cumulative incidences, based on the first IFI, were 7.7 cases per 100 transplants for matched unrelated allogeneic, 8.1 cases per 100 transplants for mismatched-related allogeneic, 5.8 cases per 100 transplants for matched-related allogeneic, and 1.2 cases per 100 transplants for autologous HSCT. CONCLUSIONS: In this national prospective surveillance study of IFIs in HSCT recipients, the cumulative incidence was highest for aspergillosis, followed by candidiasis. Understanding the epidemiologic trends and burden of IFIs may lead to improved management strategies and study design.
Resumo:
OBJECTIVE: To investigate the effect of statin use after radical prostatectomy (RP) on biochemical recurrence (BCR) in patients with prostate cancer who never received statins before RP. PATIENTS AND METHODS: We conducted a retrospective analysis of 1146 RP patients within the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Multivariable Cox proportional hazards analyses were used to examine differences in risk of BCR between post-RP statin users vs nonusers. To account for varying start dates and duration of statin use during follow-up, post-RP statin use was treated as a time-dependent variable. In a secondary analysis, models were stratified by race to examine the association of post-RP statin use with BCR among black and non-black men. RESULTS: After adjusting for clinical and pathological characteristics, post-RP statin use was significantly associated with 36% reduced risk of BCR (hazard ratio [HR] 0.64, 95% confidence interval [CI] 0.47-0.87; P = 0.004). Post-RP statin use remained associated with reduced risk of BCR after adjusting for preoperative serum cholesterol levels. In secondary analysis, after stratification by race, this protective association was significant in non-black (HR 0.49, 95% CI 0.32-0.75; P = 0.001) but not black men (HR 0.82, 95% CI 0.53-1.28; P = 0.384). CONCLUSION: In this retrospective cohort of men undergoing RP, post-RP statin use was significantly associated with reduced risk of BCR. Whether the association between post-RP statin use and BCR differs by race requires further study. Given these findings, coupled with other studies suggesting that statins may reduce risk of advanced prostate cancer, randomised controlled trials are warranted to formally test the hypothesis that statins slow prostate cancer progression.
Resumo:
The Feeding Experiments End-user Database (FEED) is a research tool developed by the Mammalian Feeding Working Group at the National Evolutionary Synthesis Center that permits synthetic, evolutionary analyses of the physiology of mammalian feeding. The tasks of the Working Group are to compile physiologic data sets into a uniform digital format stored at a central source, develop a standardized terminology for describing and organizing the data, and carry out a set of novel analyses using FEED. FEED contains raw physiologic data linked to extensive metadata. It serves as an archive for a large number of existing data sets and a repository for future data sets. The metadata are stored as text and images that describe experimental protocols, research subjects, and anatomical information. The metadata incorporate controlled vocabularies to allow consistent use of the terms used to describe and organize the physiologic data. The planned analyses address long-standing questions concerning the phylogenetic distribution of phenotypes involving muscle anatomy and feeding physiology among mammals, the presence and nature of motor pattern conservation in the mammalian feeding muscles, and the extent to which suckling constrains the evolution of feeding behavior in adult mammals. We expect FEED to be a growing digital archive that will facilitate new research into understanding the evolution of feeding anatomy.
Resumo:
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.