4 resultados para friction
em Duke University
Resumo:
Standing and walking generate information about friction underfoot. Five experiments examined whether walkers use such perceptual information for prospective control of locomotion. In particular, do walkers integrate information about friction underfoot with visual cues for sloping ground ahead to make adaptive locomotor decisions? Participants stood on low-, medium-, and high-friction surfaces on a flat platform and made perceptual judgments for possibilities for locomotion over upcoming slopes. Perceptual judgments did not match locomotor abilities: Participants tended to overestimate their abilities on low-friction slopes and underestimate on high-friction slopes (Experiments 1-4). Accuracy improved only for judgments made while participants were in direct contact with the slope (Experiment 5), highlighting the difficulty of incorporating information about friction underfoot into a plan for future actions.
Resumo:
Articular cartilage possesses complex mechanical properties that provide healthy joints the ability to bear repeated loads and maintain smooth articulating surfaces over an entire lifetime. In this study, we utilized a fiber-reinforced composite scaffold designed to mimic the anisotropic, nonlinear, and viscoelastic biomechanical characteristics of native cartilage as the basis for developing functional tissue-engineered constructs. Three-dimensionally woven poly(epsilon-caprolactone) (PCL) scaffolds were encapsulated with a fibrin hydrogel, seeded with human adipose-derived stem cells, and cultured for 28 days in chondrogenic culture conditions. Biomechanical testing showed that PCL-based constructs exhibited baseline compressive and shear properties similar to those of native cartilage and maintained these properties throughout the culture period, while supporting the synthesis of a collagen-rich extracellular matrix. Further, constructs displayed an equilibrium coefficient of friction similar to that of native articular cartilage (mu(eq) approximately 0.1-0.3) over the prescribed culture period. Our findings show that three-dimensionally woven PCL-fibrin composite scaffolds can be produced with cartilage-like mechanical properties, and that these engineered properties can be maintained in culture while seeded stem cells regenerate a new, functional tissue construct.
Resumo:
A Fermi gas of atoms with resonant interactions is predicted to obey universal hydrodynamics, in which the shear viscosity and other transport coefficients are universal functions of the density and temperature. At low temperatures, the viscosity has a universal quantum scale ħ n, where n is the density and ħ is Planck's constant h divided by 2π, whereas at high temperatures the natural scale is p(T)(3)/ħ(2), where p(T) is the thermal momentum. We used breathing mode damping to measure the shear viscosity at low temperature. At high temperature T, we used anisotropic expansion of the cloud to find the viscosity, which exhibits precise T(3/2) scaling. In both experiments, universal hydrodynamic equations including friction and heating were used to extract the viscosity. We estimate the ratio of the shear viscosity to the entropy density and compare it with that of a perfect fluid.
Resumo:
In a series of four studies, we investigated the visual cues that walkers use to predict slippery ground surfaces and tested whether visual information is reliable for specifying low-friction conditions. In Study 1, 91% of participants surveyed responded that they would use shine to identify upcoming slippery ground. Studies 2-4 confirmed participants' reliance on shine to predict slip. Participants viewed ground surfaces varying in gloss, paint color, and viewing distance under indoor and outdoor lighting conditions. Shine and slip ratings and functional walking judgments were related to surface gloss level and to surface coefficient of friction (COF). However, judgments were strongly affected by surface color, viewing distance, and lighting conditions--extraneous factors that do not change the surface COF. Results suggest that, although walkers rely on shine to predict slippery ground, shine is not a reliable visual cue for friction. Poor visual information for friction may underlie the high prevalence of friction-related slips and falls.