5 resultados para fire setting
em Duke University
Resumo:
PURPOSE: Little is known about young caregivers of people with advanced life-limiting illness. Better understanding of the needs and characteristics of these young caregivers can inform development of palliative care and other support services. METHODS: A population-based analysis of caregivers was performed from piloted questions included in the 2001-2007 face-to-face annual health surveys of 23,706 South Australians on the death of a loved one, caregiving provided, and characteristics of the deceased individual and caregiver. The survey was representative of the population by age, gender, and region of residence. FINDINGS: Most active care was provided by older, close family members, but large numbers of young people (ages 15-29) also provided assistance to individuals with advanced life-limiting illness. They comprised 14.4% of those undertaking "hands-on" care on a daily or intermittent basis, whom we grouped together as active caregivers. Almost as many young males as females participate in active caregiving (men represent 46%); most provide care while being employed, including 38% who work full-time. Over half of those engaged in hands-on care indicated the experience to be worse or much worse than expected, with young people more frequently reporting dissatisfaction thereof. Young caregivers also exhibited an increased perception of the need for assistance with grief. CONCLUSION: Young people can be integral to end-of-life care, and represent a significant cohort of active caregivers with unique needs and experiences. They may have a more negative experience as caregivers, and increased needs for grief counseling services compared to other age cohorts of caregivers.
Resumo:
Long term, high quality estimates of burned area are needed for improving both prognostic and diagnostic fire emissions models and for assessing feedbacks between fire and the climate system. We developed global, monthly burned area estimates aggregated to 0.5° spatial resolution for the time period July 1996 through mid-2009 using four satellite data sets. From 2001ĝ€ "2009, our primary data source was 500-m burned area maps produced using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance imagery; more than 90% of the global area burned during this time period was mapped in this fashion. During times when the 500-m MODIS data were not available, we used a combination of local regression and regional regression trees developed over periods when burned area and Terra MODIS active fire data were available to indirectly estimate burned area. Cross-calibration with fire observations from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and the Along-Track Scanning Radiometer (ATSR) allowed the data set to be extended prior to the MODIS era. With our data set we estimated that the global annual area burned for the years 1997ĝ€ "2008 varied between 330 and 431 Mha, with the maximum occurring in 1998. We compared our data set to the recent GFED2, L3JRC, GLOBCARBON, and MODIS MCD45A1 global burned area products and found substantial differences in many regions. Lastly, we assessed the interannual variability and long-term trends in global burned area over the past 13 years. This burned area time series serves as the basis for the third version of the Global Fire Emissions Database (GFED3) estimates of trace gas and aerosol emissions.
Resumo:
New burned area datasets and top-down constraints from atmospheric concentration measurements of pyrogenic gases have decreased the large uncertainty in fire emissions estimates. However, significant gaps remain in our understanding of the contribution of deforestation, savanna, forest, agricultural waste, and peat fires to total global fire emissions. Here we used a revised version of the Carnegie-Ames-Stanford-Approach (CASA) biogeochemical model and improved satellite-derived estimates of area burned, fire activity, and plant productivity to calculate fire emissions for the 1997-2009 period on a 0.5° spatial resolution with a monthly time step. For November 2000 onwards, estimates were based on burned area, active fire detections, and plant productivity from the MODerate resolution Imaging Spectroradiometer (MODIS) sensor. For the partitioning we focused on the MODIS era. We used maps of burned area derived from the Tropical Rainfall Measuring Mission (TRMM) Visible and Infrared Scanner (VIRS) and Along-Track Scanning Radiometer (ATSR) active fire data prior to MODIS (1997-2000) and estimates of plant productivity derived from Advanced Very High Resolution Radiometer (AVHRR) observations during the same period. Average global fire carbon emissions according to this version 3 of the Global Fire Emissions Database (GFED3) were 2.0 PgC year-1 with significant interannual variability during 1997-2001 (2.8 Pg Cyear-1 in 1998 and 1.6 PgC year-1 in 2001). Globally, emissions during 2002-2007 were rela-tively constant (around 2.1 Pg C year-1) before declining in 2008 (1.7 Pg Cyear-1) and 2009 (1.5 PgC year-1) partly due to lower deforestation fire emissions in South America and tropical Asia. On a regional basis, emissions were highly variable during 2002-2007 (e.g., boreal Asia, South America, and Indonesia), but these regional differences canceled out at a global level. During the MODIS era (2001-2009), most carbon emissions were from fires in grasslands and savannas (44%) with smaller contributions from tropical deforestation and degradation fires (20%), woodland fires (mostly confined to the tropics, 16%), forest fires (mostly in the extratropics, 15%), agricultural waste burning (3%), and tropical peat fires (3%). The contribution from agricultural waste fires was likely a lower bound because our approach for measuring burned area could not detect all of these relatively small fires. Total carbon emissions were on average 13% lower than in our previous (GFED2) work. For reduced trace gases such as CO and CH4, deforestation, degradation, and peat fires were more important contributors because of higher emissions of reduced trace gases per unit carbon combusted compared to savanna fires. Carbon emissions from tropical deforestation, degradation, and peatland fires were on average 0.5 PgC year-1. The carbon emissions from these fires may not be balanced by regrowth following fire. Our results provide the first global assessment of the contribution of different sources to total global fire emissions for the past decade, and supply the community with an improved 13-year fire emissions time series. © 2010 Author(s).
Resumo:
Systematic reviews comparing the effectiveness of strategies to prevent, detect, and treat chronic kidney disease are needed to inform patient care. We engaged stakeholders in the chronic kidney disease community to prioritize topics for future comparative effectiveness research systematic reviews. We developed a preliminary list of suggested topics and stakeholders refined and ranked topics based on their importance. Among 46 topics identified, stakeholders nominated 18 as 'high' priority. Most pertained to strategies to slow disease progression, including: (a) treat proteinuria, (b) improve access to care, (c) treat hypertension, (d) use health information technology, and (e) implement dietary strategies. Most (15 of 18) topics had been previously studied with two or more randomized controlled trials, indicating feasibility of rigorous systematic reviews. Chronic kidney disease topics rated by stakeholders as 'high priority' are varied in scope and may lead to quality systematic reviews impacting practice and policy.
Resumo:
While blockade of the cytotoxic T-lymphocyte antigen-4 (CTLA-4) T cell regulatory receptor has become a commonly utilized strategy in the management of advanced melanoma, many questions remain regarding the use of this agent in patient populations with autoimmune disease. We present a case involving the treatment of a patient with stage IV melanoma and ulcerative colitis (UC) with anti-CTLA-4 antibody immunotherapy. Upon initial treatment, the patient developed grade III colitis requiring tumor necrosis factor-alpha (TNF-α) blocking antibody therapy, however re-treatment with anti-CTLA-4 antibody following a total colectomy resulted in a rapid complete response accompanied by the development of a tracheobronchitis, a previously described extra-intestinal manifestation of UC. This case contributes to the evolving literature on the use of checkpoint inhibitors in patients also suffering from autoimmune disease, supports future clinical trials investigating the use of these agents in patients with autoimmune diseases, and suggests that an understanding of the specific molecular pathways involved in a patient's autoimmune pathology may provide insight into the development of more effective novel combinatorial immunotherapeutic strategies.