5 resultados para ferroelectrics, domains, domain walls
em Duke University
Resumo:
The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates its membrane-associated receptor substrates, such as the beta-adrenergic receptor, triggering events leading to receptor desensitization. beta ARK activity is markedly stimulated by the isoprenylated beta gamma subunit complex of heterotrimeric guanine nucleotide-binding proteins (G beta gamma), which translocates the kinase to the plasma membrane and thereby targets it to its receptor substrate. The amino-terminal two-thirds of beta ARK1 composes the receptor recognition and catalytic domains, while the carboxyl third contains the G beta gamma binding sequences, the targeting domain. We prepared this domain as a recombinant His6 fusion protein from Escherichia coli and found that it had both independent secondary structure and functional activity. We demonstrated the inhibitory properties of this domain against G beta gamma activation of type II adenylyl cyclase both in a reconstituted system utilizing Sf9 insect cell membranes and in a permeabilized 293 human embryonic kidney cell system. Gi alpha-mediated inhibition of adenylyl cyclase was not affected. These data suggest that this His6 fusion protein derived from the carboxyl terminus of beta ARK1 provides a specific probe for defining G beta gamma-mediated processes and for studying the structural features of a G beta gamma-binding domain.
Resumo:
Learning multiple tasks across heterogeneous domains is a challenging problem since the feature space may not be the same for different tasks. We assume the data in multiple tasks are generated from a latent common domain via sparse domain transforms and propose a latent probit model (LPM) to jointly learn the domain transforms, and the shared probit classifier in the common domain. To learn meaningful task relatedness and avoid over-fitting in classification, we introduce sparsity in the domain transforms matrices, as well as in the common classifier. We derive theoretical bounds for the estimation error of the classifier in terms of the sparsity of domain transforms. An expectation-maximization algorithm is derived for learning the LPM. The effectiveness of the approach is demonstrated on several real datasets.
Resumo:
Fibronectin (FN) is a large extracellular matrix (ECM) protein that is made up of
type I (FNI), type II (FNII), & type III (FNIII) domains. It assembles into an insoluble
supra-‐‑molecular structure: the fibrillar FN matrix. FN fibrillogenesis is a cell‐‑mediated process, which is initiated when FN binds to integrins on the cell surface. The FN matrix plays an important role in cell migration, proliferation, signaling & adhesion. Despite decades of research, the FN matrix is one of the least understood supra-‐‑molecular protein assemblies. There have been several attempts to elucidate the exact mechanism of matrix assembly resulting in significant progress in the field but it is still unclear as to what are FN-‐‑FN interactions, the nature of these interactions and the domains of FN that
are in contact with each other. FN matrix fibrils are elastic in nature. Two models have been proposed to explain the elasticity of the fibrils. The first model: the ‘domain unfolding’ model postulates that the unraveling of FNIII domains under tension explains fibril elasticity.
The second model relies on the conformational change of FN from compact to extended to explain fibril elasticity. FN contain 15 FNIII domains, each a 7-‐‑strand beta sandwich. Earlier work from our lab used the technique of labeling a buried Cys to study the ‘domain unfolding’ model. They used mutant FNs containing a buried Cys in a single FNIII domain and found that 6 of the 15 FNIII domains label in matrix fibrils. Domain unfolding due to tension, matrix associated conformational changes or spontaneous folding and unfolding are all possible explanation for labeling of the buried Cys. The present study also uses the technique of labeling a buried Cys to address whether it is spontaneous folding and unfolding that labels FNIII domains in cell culture. We used thiol reactive DTNB to measure the kinetics of labeling of buried Cys in eleven FN III domains over a wide range of urea concentrations (0-‐‑9M). The kinetics data were globally fit using Mathematica. The results are equivalent to those of H-‐‑D exchange, and
provide a comprehensive analysis of stability and unfolding/folding kinetics of each
domain. For two of the six domains spontaneous folding and unfolding is possibly the reason for labeling in cell culture. For the rest of the four domains it is probably matrix associated conformational changes or tension induced unfolding.
A long-‐‑standing debate in the protein-‐‑folding field is whether unfolding rate
constants or folding rate constants correlate to the stability of a protein. FNIII domains all have the same ß sandwich structure but very different stabilities and amino acid sequences. Our study analyzed the kinetics of unfolding and folding and stabilities of eleven FNIII domains and our results show that folding rate constants for FNIII domains are relatively similar and the unfolding rates vary widely and correlate to stability. FN forms a fibrillar matrix and the FN-‐‑FN interactions during matrix fibril formation are not known. FNI 1-‐‑9 or the N-‐‑ terminal region is indispensible for matrix formation and its major binding partner has been shown to be FNIII 2. Earlier work from our lab, using FRET analysis showed that the interaction of FNI 1-‐‑9 with a destabilized FNIII 2 (missing the G strand, FNIII 2ΔG) reduces the FRET efficiency. This efficiency is restored in the presence of FUD (bacterial adhesion from S. pyogenes) that has been known to interact with FNI 1-‐‑9 via a tandem ß zipper. In the present study we
use FRET analysis and a series of deletion mutants of FNIII 2ΔG to study the shortest fragment of FNIII 2ΔG that is required to bind FNI 1-‐‑9. Our results presented here are qualitative and show that FNIII 2ΔC’EFG is the shortest fragment required to bind FNI 1-‐‑9. Deletion of one more strand abolishes the interaction with FNI 1-‐‑9.
Resumo:
BACKGROUND: Chromatin containing the histone variant CENP-A (CEN chromatin) exists as an essential domain at every centromere and heritably marks the location of kinetochore assembly. The size of the CEN chromatin domain on alpha satellite DNA in humans has been shown to vary according to underlying array size. However, the average amount of CENP-A reported at human centromeres is largely consistent, implying the genomic extent of CENP-A chromatin domains more likely reflects variations in the number of CENP-A subdomains and/or the density of CENP-A nucleosomes within individual subdomains. Defining the organizational and spatial properties of CEN chromatin would provide insight into centromere inheritance via CENP-A loading in G1 and the dynamics of its distribution between mother and daughter strands during replication. RESULTS: Using a multi-color protein strategy to detect distinct pools of CENP-A over several cell cycles, we show that nascent CENP-A is equally distributed to sister centromeres. CENP-A distribution is independent of previous or subsequent cell cycles in that centromeres showing disproportionately distributed CENP-A in one cycle can equally divide CENP-A nucleosomes in the next cycle. Furthermore, we show using extended chromatin fibers that maintenance of the CENP-A chromatin domain is achieved by a cycle-specific oscillating pattern of new CENP-A nucleosomes next to existing CENP-A nucleosomes over multiple cell cycles. Finally, we demonstrate that the size of the CENP-A domain does not change throughout the cell cycle and is spatially fixed to a similar location within a given alpha satellite DNA array. CONCLUSIONS: We demonstrate that most human chromosomes share similar patterns of CENP-A loading and distribution and that centromere inheritance is achieved through specific placement of new CENP-A near existing CENP-A as assembly occurs each cell cycle. The loading pattern fixes the location and size of the CENP-A domain on individual chromosomes. These results suggest that spatial and temporal dynamics of CENP-A are important for maintaining centromere identity and genome stability.