5 resultados para ferric reductase
em Duke University
Resumo:
With the lifetime risk of being diagnosed with prostate cancer so great, an effective chemopreventive agent could have a profound impact on the lives of men. Despite decades of searching for such an agent, physicians still do not have an approved drug to offer their patients. In this article, we outline current strategies for preventing prostate cancer in general, with a focus on the 5-α-reductase inhibitors (5-ARIs) finasteride and dutasteride. We discuss the two landmark randomized, controlled trials of finasteride and dutasteride, highlighting the controversies stemming from the results, and address the issue of 5-ARI use, including reasons why providers may be hesitant to use these agents for chemoprevention. We further discuss the recent US Food and Drug Administration ruling against the proposed new indication for dutasteride and the change to the labeling of finasteride, both of which were intended to permit physicians to use the drugs for chemoprevention. Finally, we discuss future directions for 5-ARI research.
Resumo:
The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.
Resumo:
OBJECTIVE: To investigate the effect of statin use after radical prostatectomy (RP) on biochemical recurrence (BCR) in patients with prostate cancer who never received statins before RP. PATIENTS AND METHODS: We conducted a retrospective analysis of 1146 RP patients within the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Multivariable Cox proportional hazards analyses were used to examine differences in risk of BCR between post-RP statin users vs nonusers. To account for varying start dates and duration of statin use during follow-up, post-RP statin use was treated as a time-dependent variable. In a secondary analysis, models were stratified by race to examine the association of post-RP statin use with BCR among black and non-black men. RESULTS: After adjusting for clinical and pathological characteristics, post-RP statin use was significantly associated with 36% reduced risk of BCR (hazard ratio [HR] 0.64, 95% confidence interval [CI] 0.47-0.87; P = 0.004). Post-RP statin use remained associated with reduced risk of BCR after adjusting for preoperative serum cholesterol levels. In secondary analysis, after stratification by race, this protective association was significant in non-black (HR 0.49, 95% CI 0.32-0.75; P = 0.001) but not black men (HR 0.82, 95% CI 0.53-1.28; P = 0.384). CONCLUSION: In this retrospective cohort of men undergoing RP, post-RP statin use was significantly associated with reduced risk of BCR. Whether the association between post-RP statin use and BCR differs by race requires further study. Given these findings, coupled with other studies suggesting that statins may reduce risk of advanced prostate cancer, randomised controlled trials are warranted to formally test the hypothesis that statins slow prostate cancer progression.
Resumo:
BACKGROUND: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. METHODS: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. OUTCOMES AND CONCLUSIONS: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.