6 resultados para feature representation
em Duke University
Resumo:
Protocorporatist West European countries in which economic interests were collectively organized adopted PR in the first quarter of the twentieth century, whereas liberal countries in which economic interests were not collectively organized did not. Political parties, as Marcus Kreuzer points out, choose electoral systems. So how do economic interests translate into party political incentives to adopt electoral reform? We argue that parties in protocorporatist countries were representative of and closely linked to economic interests. As electoral competition in single member districts increased sharply up to World War I, great difficulties resulted for the representative parties whose leaders were seen as interest committed. They could not credibly compete for votes outside their interest without leadership changes or reductions in interest influence. Proportional representation offered an obvious solution, allowing parties to target their own voters and their organized interest to continue effective influence in the legislature. In each respect, the opposite was true of liberal countries. Data on party preferences strongly confirm this model. (Kreuzer's historical criticisms are largely incorrect, as shown in detail in the online supplementary Appendix.). © 2010 American Political Science Association.
Resumo:
BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows.
Resumo:
Although many feature selection methods for classification have been developed, there is a need to identify genes in high-dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis.Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes.
Resumo:
Cognitive-emotional distinctiveness (CED), the extent to which an individual separates emotions from an event in the cognitive representation of the event, was explored in four studies. CED was measured using a modified multidimensional scaling procedure. The first study found that lower levels of CED in memories of the September 11 terrorist attacks predicted greater frequency of intrusive thoughts about the attacks. The second study revealed that CED levels are higher in negative events, in comparison to positive events and that low CED levels in emotionally intense negative events are associated with a pattern of greater event-related distress. The third study replicated the findings from the previous study when examining CED levels in participants' memories of the 2004 Presidential election. The fourth study revealed that low CED in emotionally intense negative events is associated with worse mental health. We argue that CED is an adaptive and healthy coping feature of stressful memories.
Resumo:
Phenomenologically, humans effectively label and report feeling distinct emotions, yet the extent to which emotions are represented categorically in nervous system activity is controversial. Theoretical accounts differ in this regard, some positing distinct emotional experiences emerge from a dimensional representation (e.g., along axes of valence and arousal) whereas others propose emotions are natural categories, with dedicated neural bases and associated response profiles. This dissertation aims to empirically assess these theoretical accounts by examining how emotions are represented (either as disjoint categories or as points along continuous dimensions) in autonomic and central nervous system activity by integrating psychophysiological recording and functional neuroimaging with machine-learning based analytical methods. Results demonstrate that experientially, emotional events are well-characterized both along dimensional and categorical frameworks. Measures of central and peripheral responding discriminate among emotion categories, but are largely independent of valence and arousal. These findings suggest dimensional and categorical aspects of emotional experience are driven by separable neural substrates and demonstrate that emotional states can be objectively quantified on the basis of nervous system activity.