2 resultados para failure-prone systems
em Duke University
Resumo:
Brain-computer interfaces (BCI) have the potential to restore communication or control abilities in individuals with severe neuromuscular limitations, such as those with amyotrophic lateral sclerosis (ALS). The role of a BCI is to extract and decode relevant information that conveys a user's intent directly from brain electro-physiological signals and translate this information into executable commands to control external devices. However, the BCI decision-making process is error-prone due to noisy electro-physiological data, representing the classic problem of efficiently transmitting and receiving information via a noisy communication channel.
This research focuses on P300-based BCIs which rely predominantly on event-related potentials (ERP) that are elicited as a function of a user's uncertainty regarding stimulus events, in either an acoustic or a visual oddball recognition task. The P300-based BCI system enables users to communicate messages from a set of choices by selecting a target character or icon that conveys a desired intent or action. P300-based BCIs have been widely researched as a communication alternative, especially in individuals with ALS who represent a target BCI user population. For the P300-based BCI, repeated data measurements are required to enhance the low signal-to-noise ratio of the elicited ERPs embedded in electroencephalography (EEG) data, in order to improve the accuracy of the target character estimation process. As a result, BCIs have relatively slower speeds when compared to other commercial assistive communication devices, and this limits BCI adoption by their target user population. The goal of this research is to develop algorithms that take into account the physical limitations of the target BCI population to improve the efficiency of ERP-based spellers for real-world communication.
In this work, it is hypothesised that building adaptive capabilities into the BCI framework can potentially give the BCI system the flexibility to improve performance by adjusting system parameters in response to changing user inputs. The research in this work addresses three potential areas for improvement within the P300 speller framework: information optimisation, target character estimation and error correction. The visual interface and its operation control the method by which the ERPs are elicited through the presentation of stimulus events. The parameters of the stimulus presentation paradigm can be modified to modulate and enhance the elicited ERPs. A new stimulus presentation paradigm is developed in order to maximise the information content that is presented to the user by tuning stimulus paradigm parameters to positively affect performance. Internally, the BCI system determines the amount of data to collect and the method by which these data are processed to estimate the user's target character. Algorithms that exploit language information are developed to enhance the target character estimation process and to correct erroneous BCI selections. In addition, a new model-based method to predict BCI performance is developed, an approach which is independent of stimulus presentation paradigm and accounts for dynamic data collection. The studies presented in this work provide evidence that the proposed methods for incorporating adaptive strategies in the three areas have the potential to significantly improve BCI communication rates, and the proposed method for predicting BCI performance provides a reliable means to pre-assess BCI performance without extensive online testing.
Resumo:
Regulatory focus theory (RFT) proposes two different social-cognitive motivational systems for goal pursuit: a promotion system, which is organized around strategic approach behaviors and "making good things happen," and a prevention system, which is organized around strategic avoidance and "keeping bad things from happening." The promotion and prevention systems have been extensively studied in behavioral paradigms, and RFT posits that prolonged perceived failure to make progress in pursuing promotion or prevention goals can lead to ineffective goal pursuit and chronic distress (Higgins, 1997).
Research has begun to focus on uncovering the neural correlates of the promotion and prevention systems in an attempt to differentiate them at the neurobiological level. Preliminary research suggests that the promotion and prevention systems have both distinct and overlapping neural correlates (Eddington, Dolcos, Cabeza, Krishnan, & Strauman, 2007; Strauman et al., 2013). However, little research has examined how individual differences in regulatory focus develop and manifest. The development of individual differences in regulatory focus is particularly salient during adolescence, a crucial topic to explore given the dramatic neurodevelopmental and psychosocial changes that take place during this time, especially with regard to self-regulatory abilities. A number of questions remain unexplored, including the potential for goal-related neural activation to be modulated by (a) perceived proximity to goal attainment, (b) individual differences in regulatory orientation, specifically general beliefs about one's success or failure in attaining the two kinds of goals, (c) age, with a particular focus on adolescence, and (d) homozygosity for the Met allele of the catechol-O-methyltransferase (COMT) Val158Met polymorphism, a naturally occurring genotype which has been shown to impact prefrontal cortex activation patterns associated with goal pursuit behaviors.
This study explored the neural correlates of the promotion and prevention systems through the use of a priming paradigm involving rapid, brief, masked presentation of individually selected promotion and prevention goals to each participant while being scanned. The goals used as priming stimuli varied with regard to whether participants reported that they were close to or far away from achieving them (i.e. a "match" versus a "mismatch" representing perceived success or failure in personal goal pursuit). The study also assessed participants' overall beliefs regarding their relative success or failure in attaining promotion and prevention goals, and all participants were genotyped for the COMT Val158Met polymorphism.
A number of significant findings emerged. Both promotion and prevention priming were associated with activation in regions associated with self-referential cognition, including the left medial prefrontal cortex, cuneus, and lingual gyrus. Promotion and prevention priming were also associated with distinct patterns of neural activation; specifically, left middle temporal gyrus activation was found to be significantly greater during prevention priming. Activation in response to promotion and prevention goals was found to be modulated by self-reports of both perceived proximity to goal achievement and goal orientation. Age also had a significant effect on activation, such that activation in response to goal priming became more robust in the prefrontal cortex and in default mode network regions as a function of increasing age. Finally, COMT genotype also modulated the neural response to goal priming both alone and through interactions with regulatory focus and age. Overall, these findings provide further clarification of the neural underpinnings of the promotion and prevention systems as well as provide information about the role of development and individual differences at the personality and genetic level on activity in these neural systems.