6 resultados para extremely acidic and basic proteins
em Duke University
Resumo:
The BUZ/Znf-UBP domain is a protein module found in the cytoplasmic deacetylase HDAC6, E3 ubiquitin ligase BRAP2/IMP, and a subfamily of ubiquitin-specific proteases. Although several BUZ domains have been shown to bind ubiquitin with high affinity by recognizing its C-terminal sequence (RLRGG-COOH), it is currently unknown whether the interaction is sequence-specific or whether the BUZ domains are capable of binding to proteins other than ubiquitin. In this work, the BUZ domains of HDAC6 and Ubp-M were subjected to screening against a one-bead-one-compound (OBOC) peptide library that exhibited random peptide sequences with free C-termini. Sequence analysis of the selected binding peptides as well as alanine scanning studies revealed that the BUZ domains require a C-terminal Gly-Gly motif for binding. At the more N-terminal positions, the two BUZ domains have distinct sequence specificities, allowing them to bind to different peptides and/or proteins. A database search of the human proteome on the basis of the BUZ domain specificities identified 11 and 24 potential partner proteins for Ubp-M and HDAC6 BUZ domains, respectively. Peptides corresponding to the C-terminal sequences of four of the predicted binding partners (FBXO11, histone H4, PTOV1, and FAT10) were synthesized and tested for binding to the BUZ domains by fluorescence polarization. All four peptides bound to the HDAC6 BUZ domain with low micromolar K(D) values and less tightly to the Ubp-M BUZ domain. Finally, in vitro pull-down assays showed that the Ubp-M BUZ domain was capable of binding to the histone H3-histone H4 tetramer protein complex. Our results suggest that BUZ domains are sequence-specific protein-binding modules, with each BUZ domain potentially binding to a different subset of proteins.
Resumo:
BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.
Resumo:
BACKGROUND: Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses. METHODOLOGY/PRINCIPAL FINDINGS: A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested. CONCLUSIONS/SIGNIFICANCE: While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.
Resumo:
Genome-wide association studies (GWASs) have characterized 13 loci associated with melanoma, which only account for a small part of melanoma risk. To identify new genes with too small an effect to be detected individually but which collectively influence melanoma risk and/or show interactive effects, we used a two-step analysis strategy including pathway analysis of genome-wide SNP data, in a first step, and epistasis analysis within significant pathways, in a second step. Pathway analysis, using the gene-set enrichment analysis (GSEA) approach and the gene ontology (GO) database, was applied to the outcomes of MELARISK (3,976 subjects) and MDACC (2,827 subjects) GWASs. Cross-gene SNP-SNP interaction analysis within melanoma-associated GOs was performed using the INTERSNP software. Five GO categories were significantly enriched in genes associated with melanoma (false discovery rate ≤ 5% in both studies): response to light stimulus, regulation of mitotic cell cycle, induction of programmed cell death, cytokine activity and oxidative phosphorylation. Epistasis analysis, within each of the five significant GOs, showed significant evidence for interaction for one SNP pair at TERF1 and AFAP1L2 loci (pmeta-int = 2.0 × 10(-7) , which met both the pathway and overall multiple-testing corrected thresholds that are equal to 9.8 × 10(-7) and 2.0 × 10(-7) , respectively) and suggestive evidence for another pair involving correlated SNPs at the same loci (pmeta-int = 3.6 × 10(-6) ). This interaction has important biological relevance given the key role of TERF1 in telomere biology and the reported physical interaction between TERF1 and AFAP1L2 proteins. This finding brings a novel piece of evidence for the emerging role of telomere dysfunction into melanoma development.
Resumo:
BACKGROUND: Parrots belong to a group of behaviorally advanced vertebrates and have an advanced ability of vocal learning relative to other vocal-learning birds. They can imitate human speech, synchronize their body movements to a rhythmic beat, and understand complex concepts of referential meaning to sounds. However, little is known about the genetics of these traits. Elucidating the genetic bases would require whole genome sequencing and a robust assembly of a parrot genome. FINDINGS: We present a genomic resource for the budgerigar, an Australian Parakeet (Melopsittacus undulatus) -- the most widely studied parrot species in neuroscience and behavior. We present genomic sequence data that includes over 300× raw read coverage from multiple sequencing technologies and chromosome optical maps from a single male animal. The reads and optical maps were used to create three hybrid assemblies representing some of the largest genomic scaffolds to date for a bird; two of which were annotated based on similarities to reference sets of non-redundant human, zebra finch and chicken proteins, and budgerigar transcriptome sequence assemblies. The sequence reads for this project were in part generated and used for both the Assemblathon 2 competition and the first de novo assembly of a giga-scale vertebrate genome utilizing PacBio single-molecule sequencing. CONCLUSIONS: Across several quality metrics, these budgerigar assemblies are comparable to or better than the chicken and zebra finch genome assemblies built from traditional Sanger sequencing reads, and are sufficient to analyze regions that are difficult to sequence and assemble, including those not yet assembled in prior bird genomes, and promoter regions of genes differentially regulated in vocal learning brain regions. This work provides valuable data and material for genome technology development and for investigating the genomics of complex behavioral traits.
Resumo:
My dissertation work integrates comparative transcriptomics and functional analyses to investigate gene expression changes underlying two significant aspects of sea urchin evolution and development: the dramatic developmental changes associated with an ecologically significant shift in life history strategy and the development of the unusual radial body plan of adult sea urchins.
In Chapter 2, I investigate evolutionary changes in gene expression underlying the switch from feeding (planktotrophic) to nonfeeding (lecithotrophic) development in sea urchins. In order to identify these changes, I used Illumina RNA-seq to measure expression dynamics across 7 developmental stages in three sea urchin species: the lecithotroph Heliocidaris erythrogramma, the closely related planktotroph Heliocidaris tuberculata, and an outgroup planktotroph Lytechinus variegatus. My analyses draw on a well-characterized developmental gene regulatory network (GRN) in sea urchins to understand how the ancestral planktotrophic developmental program was altered during the evolution of lecithotrophic development. My results suggest that changes in gene expression profiles occurred more frequently across the transcriptome during the evolution of lecithotrophy than during the persistence of planktotrophy. These changes were even more pronounced within the GRN than across the transcriptome as a whole, and occurred in each network territory (skeletogenic, endomesoderm and ectoderm). I found evidence for both conservation and divergence of regulatory interactions in the network, as well as significant changes in the expression of genes with known roles in larval skeletogenesis, which is dramatically altered in lecithotrophs. I further explored network dynamics between species using coexpression analyses, which allowed me to identify novel players likely involved in sea urchin neurogenesis and endoderm patterning.
In Chapter 3, I investigate developmental changes in gene expression underlying radial body plan development and metamorphosis in H. erythrogramma. Using Illumina RNA-seq, I measured gene expression profiles across larval, metamorphic, and post-metamorphic life cycle phases. My results present a high-resolution view of gene expression dynamics during the complex transition from pre- to post-metamorphic development and suggest that distinct sets of regulatory and effector proteins are used during different life history phases.
Collectively, my investigations provide an important foundation for future, empirical studies to investigate the functional role of gene expression change in the evolution of developmental differences between species and also for the generation of the unusual radial body plan of sea urchins.