3 resultados para extreme weather events
em Duke University
Resumo:
© 2015 Published by Elsevier B.V.Throughout the southern US, past forest management practices have replaced large areas of native forests with loblolly pine plantations and have resulted in changes in forest response to extreme weather conditions. However, uncertainty remains about the response of planted versus natural species to drought across the geographical range of these forests. Taking advantage of a cluster of unmanaged stands (85-130year-old hardwoods) and managed plantations (17-20year-old loblolly pine) in coastal and Piedmont areas of North Carolina, tree water use, cavitation resistance, whole-tree hydraulic (Ktree) and stomatal (Gs) conductances were measured in four sites covering representative forests growing in the region. We also used a hydraulic model to predict the resilience of those sites to extreme soil drying. Our objectives were to determine: (1) if Ktree and stomatal regulation in response to atmospheric and soil droughts differ between species and sites; (2) how ecosystem type, through tree water use, resistance to cavitation and rooting profiles, affects the water uptake limit that can be reached under drought; and (3) the influence of stand species composition on critical transpiration that sets a functional water uptake limit under drought conditions. The results show that across sites, water stress affected the coordination between Ktree and Gs. As soil water content dropped below 20% relative extractable water, Ktree declined faster and thus explained the decrease in Gs and in its sensitivity to vapor pressure deficit. Compared to branches, the capability of roots to resist high xylem tension has a great impact on tree-level water use and ultimately had important implications for pine plantations resistance to future summer droughts. Model simulations revealed that the decline in Ktree due to xylem cavitation aggravated the effects of soil drying on tree transpiration. The critical transpiration rate (Ecrit), which corresponds to the maximum rate at which transpiration begins to level off to prevent irreversible hydraulic failure, was higher in managed forest plantations than in their unmanaged counterparts. However, even with this higher Ecrit, the pine plantations operated very close to their critical leaf water potentials (i.e. to their permissible water potentials without total hydraulic failure), suggesting that intensively managed plantations are more drought-sensitive and can withstand less severe drought than natural forests.
Resumo:
To provide the three-way comparisons needed to test existing theories, we compared (1) most-stressful memories to other memories and (2) involuntary to voluntary memories (3) in 75 community dwelling adults with and 42 without a current diagnosis of posttraumatic stress disorder (PTSD). Each rated their three most-stressful, three most-positive, seven most-important and 15 word-cued autobiographical memories, and completed tests of personality and mood. Involuntary memories were then recorded and rated as they occurred for 2 weeks. Standard mechanisms of cognition and affect applied to extreme events accounted for the properties of stressful memories. Involuntary memories had greater emotional intensity than voluntary memories, but were not more frequently related to traumatic events. The emotional intensity, rehearsal, and centrality to the life story of both voluntary and involuntary memories, rather than incoherence of voluntary traumatic memories and enhanced availability of involuntary traumatic memories, were the properties of autobiographical memories associated with PTSD.
Resumo:
This study investigates the effect of serious health events including new diagnoses of heart attacks, strokes, cancers, chronic lung disease, chronic heart failure, diabetes, and heart disease on future smoking status up to 6 years postevent. Data come from the Health and Retirement Study, a nationally representative longitudinal survey of Americans aged 51-61 in 1991, followed every 2 years from 1992 to 1998. Smoking status is evaluated at each of three follow-ups, (1994, 1996, and 1998) as a function of health events between each of the four waves. Acute and chronic health events are associated with much lower likelihood of smoking both in the wave immediately following the event and up to 6 years later. However, future events do not retrospectively predict past cessation. In sum, serious health events have substantial impacts on cessation rates of older smokers. Notably, these effects persist for as much as 6 years after a health event.