6 resultados para experimental models
em Duke University
Resumo:
The meniscus plays a critical biomechanical role in the knee, providing load support, joint stability, and congruity. Importantly, growing evidence indicates that the mechanobiologic response of meniscal cells plays a critical role in the physiologic, pathologic, and repair responses of the meniscus. Here we review experimental and theoretical studies that have begun to directly measure the biomechanical effects of joint loading on the meniscus under physiologic and pathologic conditions, showing that the menisci are exposed to high contact stresses, resulting in a complex and nonuniform stress-strain environment within the tissue. By combining microscale measurements of the mechanical properties of meniscal cells and their pericellular and extracellular matrix regions, theoretical and experimental models indicate that the cells in the meniscus are exposed to a complex and inhomogeneous environment of stress, strain, fluid pressure, fluid flow, and a variety of physicochemical factors. Studies across a range of culture systems from isolated cells to tissues have revealed that the biological response of meniscal cells is directly influenced by physical factors, such as tension, compression, and hydrostatic pressure. In addition, these studies have provided new insights into the mechanotransduction mechanisms by which physical signals are converted into metabolic or pro/anti-inflammatory responses. Taken together, these in vivo and in vitro studies show that mechanical factors play an important role in the health, degeneration, and regeneration of the meniscus. A more thorough understanding of the mechanobiologic responses of the meniscus will hopefully lead to therapeutic approaches to prevent degeneration and enhance repair of the meniscus.
Resumo:
With increasing recognition of the roles RNA molecules and RNA/protein complexes play in an unexpected variety of biological processes, understanding of RNA structure-function relationships is of high current importance. To make clean biological interpretations from three-dimensional structures, it is imperative to have high-quality, accurate RNA crystal structures available, and the community has thoroughly embraced that goal. However, due to the many degrees of freedom inherent in RNA structure (especially for the backbone), it is a significant challenge to succeed in building accurate experimental models for RNA structures. This chapter describes the tools and techniques our research group and our collaborators have developed over the years to help RNA structural biologists both evaluate and achieve better accuracy. Expert analysis of large, high-resolution, quality-conscious RNA datasets provides the fundamental information that enables automated methods for robust and efficient error diagnosis in validating RNA structures at all resolutions. The even more crucial goal of correcting the diagnosed outliers has steadily developed toward highly effective, computationally based techniques. Automation enables solving complex issues in large RNA structures, but cannot circumvent the need for thoughtful examination of local details, and so we also provide some guidance for interpreting and acting on the results of current structure validation for RNA.
Resumo:
Diabetes mellitus is becoming increasingly prevalent worldwide. Additionally, there is an increasing number of patients receiving implantable devices such as glucose sensors and orthopedic implants. Thus, it is likely that the number of diabetic patients receiving these devices will also increase. Even though implantable medical devices are considered biocompatible by the Food and Drug Administration, the adverse tissue healing that occurs adjacent to these foreign objects is a leading cause of their failure. This foreign body response leads to fibrosis, encapsulation of the device, and a reduction or cessation of device performance. A second adverse event is microbial infection of implanted devices, which can lead to persistent local and systemic infections and also exacerbates the fibrotic response. Nearly half of all nosocomial infections are associated with the presence of an indwelling medical device. Events associated with both the foreign body response and implant infection can necessitate device removal and may lead to amputation, which is associated with significant morbidity and cost. Diabetes mellitus is generally indicated as a risk factor for the infection of a variety of implants such as prosthetic joints, pacemakers, implantable cardioverter defibrillators, penile implants, and urinary catheters. Implant infection rates in diabetic patients vary depending upon the implant and the microorganism, however, for example, diabetes was found to be a significant variable associated with a nearly 7.2% infection rate for implantable cardioverter defibrillators by the microorganism Candida albicans. While research has elucidated many of the altered mechanisms of diabetic cutaneous wound healing, the internal healing adjacent to indwelling medical devices in a diabetic model has rarely been studied. Understanding this healing process is crucial to facilitating improved device design. The purpose of this article is to summarize the physiologic factors that influence wound healing and infection in diabetic patients, to review research concerning diabetes and biomedical implants and device infection, and to critically analyze which diabetic animal model might be advantageous for assessing internal healing adjacent to implanted devices.
Resumo:
Nature is challenged to move charge efficiently over many length scales. From sub-nm to μm distances, electron-transfer proteins orchestrate energy conversion, storage, and release both inside and outside the cell. Uncovering the detailed mechanisms of biological electron-transfer reactions, which are often coupled to bond-breaking and bond-making events, is essential to designing durable, artificial energy conversion systems that mimic the specificity and efficiency of their natural counterparts. Here, we use theoretical modeling of long-distance charge hopping (Chapter 3), synthetic donor-bridge-acceptor molecules (Chapters 4, 5, and 6), and de novo protein design (Chapters 5 and 6) to investigate general principles that govern light-driven and electrochemically driven electron-transfer reactions in biology. We show that fast, μm-distance charge hopping along bacterial nanowires requires closely packed charge carriers with low reorganization energies (Chapter 3); singlet excited-state electronic polarization of supermolecular electron donors can attenuate intersystem crossing yields to lower-energy, oppositely polarized, donor triplet states (Chapter 4); the effective static dielectric constant of a small (~100 residue) de novo designed 4-helical protein bundle can change upon phototriggering an electron transfer event in the protein interior, providing a means to slow the charge-recombination reaction (Chapter 5); and a tightly-packed de novo designed 4-helix protein bundle can drastically alter charge-transfer driving forces of photo-induced amino acid radical formation in the bundle interior, effectively turning off a light-driven oxidation reaction that occurs in organic solvent (Chapter 6). This work leverages unique insights gleaned from proteins designed from scratch that bind synthetic donor-bridge-acceptor molecules that can also be studied in organic solvents, opening new avenues of exploration into the factors critical for protein control of charge flow in biology.
Resumo:
We verify numerically and experimentally the accuracy of an analytical model used to derive the effective nonlinear susceptibilities of a varactor-loaded split ring resonator (VLSRR) magnetic medium. For the numerical validation, a nonlinear oscillator model for the effective magnetization of the metamaterial is applied in conjunction with Maxwell equations and the two sets of equations solved numerically in the time-domain. The computed second harmonic generation (SHG) from a slab of a nonlinear material is then compared with the analytical model. The computed SHG is in excellent agreement with that predicted by the analytical model, both in terms of magnitude and spectral characteristics. Moreover, experimental measurements of the power transmitted through a fabricated VLSRR metamaterial at several power levels are also in agreement with the model, illustrating that the effective medium techniques associated with metamaterials can accurately be transitioned to nonlinear systems.
Resumo:
A framework for adaptive and non-adaptive statistical compressive sensing is developed, where a statistical model replaces the standard sparsity model of classical compressive sensing. We propose within this framework optimal task-specific sensing protocols specifically and jointly designed for classification and reconstruction. A two-step adaptive sensing paradigm is developed, where online sensing is applied to detect the signal class in the first step, followed by a reconstruction step adapted to the detected class and the observed samples. The approach is based on information theory, here tailored for Gaussian mixture models (GMMs), where an information-theoretic objective relationship between the sensed signals and a representation of the specific task of interest is maximized. Experimental results using synthetic signals, Landsat satellite attributes, and natural images of different sizes and with different noise levels show the improvements achieved using the proposed framework when compared to more standard sensing protocols. The underlying formulation can be applied beyond GMMs, at the price of higher mathematical and computational complexity. © 1991-2012 IEEE.