3 resultados para enzyme synthesis

em Duke University


Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Ganglioside biosynthesis occurs through a multi-enzymatic pathway which at the lactosylceramide step is branched into several biosynthetic series. Lc3 synthase utilizes a variety of galactose-terminated glycolipids as acceptors by establishing a glycosidic bond in the beta-1,3-linkage to GlcNaAc to extend the lacto- and neolacto-series gangliosides. In order to examine the lacto-series ganglioside functions in mice, we used gene knockout technology to generate Lc3 synthase gene B3gnt5-deficient mice by two different strategies and compared the phenotypes of the two null mouse groups with each other and with their wild-type counterparts. RESULTS: B3gnt5 gene knockout mutant mice appeared normal in the embryonic stage and, if they survived delivery, remained normal during early life. However, about 9% developed early-stage growth retardation, 11% died postnatally in less than 2 months, and adults tended to die in 5-15 months, demonstrating splenomegaly and notably enlarged lymph nodes. Without lacto-neolacto series gangliosides, both homozygous and heterozygous mice gradually displayed fur loss or obesity, and breeding mice demonstrated reproductive defects. Furthermore, B3gnt5 gene knockout disrupted the functional integrity of B cells, as manifested by a decrease in B-cell numbers in the spleen, germinal center disappearance, and less efficiency to proliferate in hybridoma fusion. CONCLUSIONS: These novel results demonstrate unequivocally that lacto-neolacto series gangliosides are essential to multiple physiological functions, especially the control of reproductive output, and spleen B-cell abnormality. We also report the generation of anti-IgG response against the lacto-series gangliosides 3'-isoLM1 and 3',6'-isoLD1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Malignant gliomas frequently harbor mutations in the isocitrate dehydrogenase 1 (IDH1) gene. Studies suggest that IDH mutation contributes to tumor pathogenesis through mechanisms that are mediated by the neomorphic metabolite of the mutant IDH1 enzyme, 2-hydroxyglutarate (2-HG). The aim of this work was to synthesize and evaluate radiolabeled compounds that bind to the mutant IDH1 enzyme with the goal of enabling noninvasive imaging of mutant IDH1 expression in gliomas by positron emission tomography (PET). METHODS: A small library of nonradioactive analogs were designed and synthesized based on the chemical structure of reported butyl-phenyl sulfonamide inhibitors of mutant IDH1. Enzyme inhibition assays were conducted using purified mutant IDH1 enzyme, IDH1-R132H, to determine the IC50 and the maximal inhibitory efficiency of the synthesized compounds. Selected compounds, 1 and 4, were labeled with radioiodine ((125)I) and/or (18)F using bromo- and phenol precursors, respectively. In vivo behavior of the labeled inhibitors was studied by conducting tissue distribution studies with [(125)I]1 in normal mice. Cell uptake studies were conducted using an isogenic astrocytoma cell line that carried a native IDH1-R132H mutation to evaluate the potential uptake of the labeled inhibitors in IDH1-mutated tumor cells. RESULTS: Enzyme inhibition assays showed good inhibitory potency for compounds that have iodine or a fluoroethoxy substituent at the ortho position of the phenyl ring in compounds 1 and 4 with IC50 values of 1.7 μM and 2.3 μM, respectively. Compounds 1 and 4 inhibited mutant IDH1 activity and decreased the production of 2-HG in an IDH1-mutated astrocytoma cell line. Radiolabeling of 1 and 4 was achieved with an average radiochemical yield of 56.6 ± 20.1% for [(125)I]1 (n = 4) and 67.5 ± 6.6% for [(18)F]4 (n = 3). [(125)I]1 exhibited favorable biodistribution characteristics in normal mice, with rapid clearance from the blood and elimination via the hepatobiliary system by 4 h after injection. The uptake of [(125)I]1 in tumor cells positive for IDH1-R132H was significantly higher compared to isogenic WT-IDH1 controls, with a maximal uptake ratio of 1.67 at 3 h post injection. Co-incubation of the labeled inhibitors with the corresponding nonradioactive analogs, and decreasing the normal concentrations of FBS (10%) in the incubation media substantially increased the uptake of the labeled inhibitors in both the IDH1-mutant and WT-IDH1 tumor cell lines, suggesting significant non-specific binding of the synthesized labeled butyl-phenyl sulfonamide inhibitors. CONCLUSIONS: These data demonstrate the feasibility of developing radiolabeled probes for the mutant IDH1 enzyme based on enzyme inhibitors. Further optimization of the labeled inhibitors by modifying the chemical structure to decrease the lipophilicity and to increase potency may yield compounds with improved characteristics as probes for imaging mutant IDH1 expression in tumors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and

have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural

product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that

has been shown to possess high differential cytotoxicity towards cancer cells along with excellent

HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and

pharmacokinetic properties of largazole.

In attempts to make these improvements and furnish a more efficient biochemical probe

as well as a potential therapeutic, several largazole analogues have been designed, synthesized,

and tested for their biological activity. Three different types of analogues were prepared. First,

different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential

HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide

variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC

inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a

different prodrug strategy to modulate the pharmacokinetic properties of largazole.

Through these analogues it was shown that C2 position can be modified significantly

without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While

the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol

can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of

a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying

functional responses in vitro and in vivo.

v

Largazole is already an impressive HDAC inhibitor that shows incredible promise.

However, in order to further develop this natural product into an anti-cancer therapeutic as well as

a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity

are required. Through these studies we plan on building upon existing structure–activity

relationships to further our understanding of largazole’s mechanism of inhibition so that we may

improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that

may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of

biochemical systems.