6 resultados para environmental critical level
em Duke University
Resumo:
Social attitudes, attitudes toward financial risk and attitudes toward deferred gratification are thought to influence many important economic decisions over the life-course. In economic theory, these attitudes are key components in diverse models of behavior, including collective action, saving and investment decisions and occupational choice. The relevance of these attitudes have been confirmed empirically. Yet, the factors that influence them are not well understood. This research evaluates how these attitudes are affected by large disruptive events, namely, a natural disaster and a civil conflict, and also by an individual-specific life event, namely, having children.
By implementing rigorous empirical strategies drawing on rich longitudinal datasets, this research project advances our understanding of how life experiences shape these attitudes. Moreover, compelling evidence is provided that the observed changes in attitudes are likely to reflect changes in preferences given that they are not driven just by changes in financial circumstances. Therefore the findings of this research project also contribute to the discussion of whether preferences are really fixed, a usual assumption in economics.
In the first chapter, I study how altruistic and trusting attitudes are affected by exposure to the 2004 Indian Ocean tsunami as long as ten years after the disaster occurred. Establishing a causal relationship between natural disasters and attitudes presents several challenges as endogenous exposure and sample selection can confound the analysis. I take on these challenges by exploiting plausibly exogenous variation in exposure to the tsunami and by relying on a longitudinal dataset representative of the pre-tsunami population in two districts of Aceh, Indonesia. The sample is drawn from the Study of the Tsunami Aftermath and Recovery (STAR), a survey with data collected both before and after the disaster and especially designed to identify the impact of the tsunami. The altruistic and trusting attitudes of the respondents are measured by their behavior in the dictator and trust games. I find that witnessing closely the damage caused by the tsunami but without suffering severe economic damage oneself increases altruistic and trusting behavior, particularly towards individuals from tsunami affected communities. Having suffered severe economic damage has no impact on altruistic behavior but may have increased trusting behavior. These effects do not seem to be caused by the consequences of the tsunami on people’s financial situation. Instead they are consistent with how experiences of loss and solidarity may have shaped social attitudes by affecting empathy and perceptions of who is deserving of aid and trust.
In the second chapter, co-authored with Ryan Brown, Duncan Thomas and Andrea Velasquez, we investigate how attitudes toward financial risk are affected by elevated levels of insecurity and uncertainty brought on by the Mexican Drug War. To conduct our analysis, we pair the Mexican Family Life Survey (MxFLS), a rich longitudinal dataset ideally suited for our purposes, with a dataset on homicide rates at the month and municipality-level. The homicide rates capture well the overall crime environment created by the drug war. The MxFLS elicits risk attitudes by asking respondents to choose between hypothetical gambles with different payoffs. Our strategy to identify a causal effect has two key components. First, we implement an individual fixed effects strategy which allows us to control for all time-invariant heterogeneity. The remaining time variant heterogeneity is unlikely to be correlated with changes in the local crime environment given the well-documented political origins of the Mexican Drug War. We also show supporting evidence in this regard. The second component of our identification strategy is to use an intent-to-treat approach to shield our estimates from endogenous migration. Our findings indicate that exposure to greater local-area violent crime results in increased risk aversion. This effect is not driven by changes in financial circumstances, but may be explained instead by heightened fear of victimization. Nonetheless, we find that having greater economic resources mitigate the impact. This may be due to individuals with greater economic resources being able to avoid crime by affording better transportation or security at work.
The third chapter, co-authored with Duncan Thomas, evaluates whether attitudes toward deferred gratification change after having children. For this study we also exploit the MxFLS, which elicits attitudes toward deferred gratification (commonly known as time discounting) by asking individuals to choose between hypothetical payments at different points in time. We implement a difference-in-difference estimator to control for all time-invariant heterogeneity and show that our results are robust to the inclusion of time varying characteristics likely correlated with child birth. We find that becoming a mother increases time discounting especially in the first two years after childbirth and in particular for those women without a spouse at home. Having additional children does not have an effect and the effect for men seems to go in the opposite direction. These heterogeneous effects suggest that child rearing may affect time discounting due to generated stress or not fully anticipated spending needs.
Resumo:
The environment affects our health, livelihoods, and the social and political institutions within which we interact. Indeed, nearly a quarter of the global disease burden is attributed to environmental factors, and many of these factors are exacerbated by global climate change. Thus, the central research question of this dissertation is: How do people cope with and adapt to uncertainty, complexity, and change of environmental and health conditions? Specifically, I ask how institutional factors, risk aversion, and behaviors affect environmental health outcomes. I further assess the role of social capital in climate adaptation, and specifically compare individual and collective adaptation. I then analyze how policy develops accounting for both adaptation to the effects of climate and mitigation of climate-changing emissions. In order to empirically test the relationships between these variables at multiple levels, I combine multiple methods, including semi-structured interviews, surveys, and field experiments, along with health and water quality data. This dissertation uses the case of Ethiopia, Africa’s second-most populous nation, which has a large rural population and is considered very vulnerable to climate change. My fieldwork included interviews and institutional data collection at the national level, and a three-year study (2012-2014) of approximately 400 households in 20 villages in the Ethiopian Rift Valley. I evaluate the theoretical relationships between households, communities, and government in the process of adaptation to environmental stresses. Through my analyses, I demonstrate that water source choice varies by individual risk aversion and institutional context, which ultimately has implications for environmental health outcomes. I show that qualitative measures of trust predict cooperation in adaptation, consistent with social capital theory, but that measures of trust are negatively related with private adaptation by the individual. Finally, I describe how Ethiopia had some unique characteristics, significantly reinforced by international actors, that led to the development of an extensive climate policy, and yet with some challenges remaining for implementation. These results suggest a potential for adaptation through the interactions among individuals, communities, and government in the search for transformative processes when confronting environmental threats and climate change.
Resumo:
Microorganisms mediate many biogeochemical processes critical to the functioning of ecosystems, which places them as an intermediate between environmental change and the resulting ecosystem response. Yet, we have an incomplete understanding of these relationships, how to predict them, and when they are influential. Understanding these dynamics will inform ecological principles developed for macroorganisms and aid expectations for microbial responses to new gradients. To address this research goal, I used two studies of environmental gradients and a literature synthesis.
With the gradient studies, I assessed microbial community composition in stream biofilms across a gradient of alkaline mine drainage. I used multivariate approaches to examine changes in the non-eukaryote microbial community composition of taxa (chapter 2) and functional genes (chapter 3). I found that stream biofilms at sites receiving alkaline mine drainage had distinct community composition and also differed in the composition of functional gene groups compared with unmined reference sites. Compositional shifts were not dominated by groups that could benefit from mining associated increases of terminal electron acceptors; two-thirds of responsive taxa and functional gene groups were negatively associated with mining. The majority of subsidies and stressors (nitrate, sulfate, conductivity) had no consistent relationships with taxa or gene abundances. However, methane metabolism genes were less abundant at mined sites and there was a strong, positive correlation between selenate reductase gene abundance and mining-associated selenium. These results highlighted the potential for indirect factors to also play an important role in explaining compositional shifts.
In the fourth chapter, I synthesized studies that use environmental perturbations to explore microbial community structure and microbial process connections. I examined nine journals (2009–13) and found that many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant. No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure. Together, the findings suggested that few publications report statistically testing structure-process links; but when tested, links often occurred yet shared few commonalities in linked processes or structures and the techniques used for measuring them.
Although the research community has made progress, much work remains to ensure that the vast and growing wealth of microbial informatics data is translated into useful ecological information. In part, this challenge can be approached through using hypotheses to guide analyses, but also by being open to opportunities for hypothesis generation. The results from my dissertation work advise that it is important to carefully interpret shifts in community composition in relation to abiotic characteristics and recommend considering ecological, thermodynamic, and kinetic principles to understand the properties governing community responses to environmental perturbation.
Resumo:
Light rainfall is the baseline input to the annual water budget in mountainous landscapes through the tropics and at mid-latitudes. In the Southern Appalachians, the contribution from light rainfall ranges from 50-60% during wet years to 80-90% during dry years, with convective activity and tropical cyclone input providing most of the interannual variability. The Southern Appalachians is a region characterized by rich biodiversity that is vulnerable to land use/land cover changes due to its proximity to a rapidly growing population. Persistent near surface moisture and associated microclimates observed in this region has been well documented since the colonization of the area in terms of species health, fire frequency, and overall biodiversity. The overarching objective of this research is to elucidate the microphysics of light rainfall and the dynamics of low level moisture in the inner region of the Southern Appalachians during the warm season, with a focus on orographically mediated processes. The overarching research hypothesis is that physical processes leading to and governing the life cycle of orographic fog, low level clouds, and precipitation, and their interactions, are strongly tied to landform, land cover, and the diurnal cycles of flow patterns, radiative forcing, and surface fluxes at the ridge-valley scale. The following science questions will be addressed specifically: 1) How do orographic clouds and fog affect the hydrometeorological regime from event to annual scale and as a function of terrain characteristics and land cover?; 2) What are the source areas, governing processes, and relevant time-scales of near surface moisture convergence patterns in the region?; and 3) What are the four dimensional microphysical and dynamical characteristics, including variability and controlling factors and processes, of fog and light rainfall? The research was conducted with two major components: 1) ground-based high-quality observations using multi-sensor platforms and 2) interpretive numerical modeling guided by the analysis of the in situ data collection. Findings illuminate a high level of spatial – down to the ridge scale - and temporal – from event to annual scale - heterogeneity in observations, and a significant impact on the hydrological regime as a result of seeder-feeder interactions among fog, low level clouds, and stratiform rainfall that enhance coalescence efficiency and lead to significantly higher rainfall rates at the land surface. Specifically, results show that enhancement of an event up to one order of magnitude in short-term accumulation can occur as a result of concurrent fog presence. Results also show that events are modulated strongly by terrain characteristics including elevation, slope, geometry, and land cover. These factors produce interactions between highly localized flows and gradients of temperature and moisture with larger scale circulations. Resulting observations of DSD and rainfall patterns are stratified by region and altitude and exhibit clear diurnal and seasonal cycles.
Resumo:
This study used Landsat 8 satellite imagery to identify environmental variables of households with malaria vector breeding sites in a malaria endemic rural district in Western Kenya. Understanding the influence of environmental variables on the distribution of malaria has been critical in the strengthening of malaria control programs. Using remote sensing and GIS technologies, this study performed a land classification, NDVI, Tasseled Cap Wetness Index, and derived land surface temperature values of the study area and examined the significance of each variable in predicting the probability of a household with a mosquito breeding site with and without larvae. The findings of this study revealed that households with any potential breeding sites were characterized by higher moisture, higher vegetation density (NDVI) and in urban areas or roads. The results of this study also confirmed that land surface temperature was significant in explaining the presence of active mosquito breeding sites (P< 0.000). The present study showed that freely available Landsat 8 imagery has limited use in deriving environmental characteristics of malaria vector habitats at the scale of the Bungoma East District in Western Kenya.
Resumo:
Forests change with changes in their environment based on the physiological responses of individual trees. These short-term reactions have cumulative impacts on long-term demographic performance. For a tree in a forest community, success depends on biomass growth to capture above- and belowground resources and reproductive output to establish future generations. Here we examine aspects of how forests respond to changes in moisture and light availability and how these responses are related to tree demography and physiology.
First we address the long-term pattern of tree decline before death and its connection with drought. Increasing drought stress and chronic morbidity could have pervasive impacts on forest composition in many regions. We use long-term, whole-stand inventory data from southeastern U.S. forests to show that trees exposed to drought experience multiyear declines in growth prior to mortality. Following a severe, multiyear drought, 72% of trees that did not recover their pre-drought growth rates died within 10 years. This pattern was mediated by local moisture availability. As an index of morbidity prior to death, we calculated the difference in cumulative growth after drought relative to surviving conspecifics. The strength of drought-induced morbidity varied among species and was correlated with species drought tolerance.
Next, we investigate differences among tree species in reproductive output relative to biomass growth with changes in light availability. Previous studies reach conflicting conclusions about the constraints on reproductive allocation relative to growth and how they vary through time, across species, and between environments. We test the hypothesis that canopy exposure to light, a critical resource, limits reproductive allocation by comparing long-term relationships between reproduction and growth for trees from 21 species in forests throughout the southeastern U.S. We found that species had divergent responses to light availability, with shade-intolerant species experiencing an alleviation of trade-offs between growth and reproduction at high light. Shade-tolerant species showed no changes in reproductive output across light environments.
Given that the above patterns depend on the maintenance of transpiration, we next developed an approach for predicting whole-tree water use from sap flux observations. Accurately scaling these observations to tree- or stand-levels requires accounting for variation in sap flux between wood types and with depth into the tree. We compared different models with sap flux data to test the hypotheses that radial sap flux profiles differ by wood type and tree size. We show that radial variation in sap flux is dependent on wood type but independent of tree size for a range of temperate trees. The best-fitting model predicted out-of-sample sap flux observations and independent estimates of sapwood area with small errors, suggesting robustness in new settings. We outline a method for predicting whole-tree water use with this model and include computer code for simple implementation in other studies.
Finally, we estimated tree water balances during drought with a statistical time-series analysis. Moisture limitation in forest stands comes predominantly from water use by the trees themselves, a drought-stand feedback. We show that drought impacts on tree fitness and forest composition can be predicted by tracking the moisture reservoir available to each tree in a mass balance. We apply this model to multiple seasonal droughts in a temperate forest with measurements of tree water use to demonstrate how species and size differences modulate moisture availability across landscapes. As trees deplete their soil moisture reservoir during droughts, a transpiration deficit develops, leading to reduced biomass growth and reproductive output.
This dissertation draws connections between the physiological condition of individual trees and their behavior in crowded, diverse, and continually-changing forest stands. The analyses take advantage of growing data sets on both the physiology and demography of trees as well as novel statistical techniques that allow us to link these observations to realistic quantitative models. The results can be used to scale up tree measurements to entire stands and address questions about the future composition of forests and the land’s balance of water and carbon.