2 resultados para enforced dormancy
em Duke University
Resumo:
Community-based management and the establishment of marine reserves have been advocated worldwide as means to overcome overexploitation of fisheries. Yet, researchers and managers are divided regarding the effectiveness of these measures. The "tragedy of the commons" model is often accepted as a universal paradigm, which assumes that unless managed by the State or privatized, common-pool resources are inevitably overexploited due to conflicts between the self-interest of individuals and the goals of a group as a whole. Under this paradigm, the emergence and maintenance of effective community-based efforts that include cooperative risky decisions as the establishment of marine reserves could not occur. In this paper, we question these assumptions and show that outcomes of commons dilemmas can be complex and scale-dependent. We studied the evolution and effectiveness of a community-based management effort to establish, monitor, and enforce a marine reserve network in the Gulf of California, Mexico. Our findings build on social and ecological research before (1997-2001), during (2002) and after (2003-2004) the establishment of marine reserves, which included participant observation in >100 fishing trips and meetings, interviews, as well as fishery dependent and independent monitoring. We found that locally crafted and enforced harvesting rules led to a rapid increase in resource abundance. Nevertheless, news about this increase spread quickly at a regional scale, resulting in poaching from outsiders and a subsequent rapid cascading effect on fishing resources and locally-designed rule compliance. We show that cooperation for management of common-pool fisheries, in which marine reserves form a core component of the system, can emerge, evolve rapidly, and be effective at a local scale even in recently organized fisheries. Stakeholder participation in monitoring, where there is a rapid feedback of the systems response, can play a key role in reinforcing cooperation. However, without cross-scale linkages with higher levels of governance, increase of local fishery stocks may attract outsiders who, if not restricted, will overharvest and threaten local governance. Fishers and fishing communities require incentives to maintain their management efforts. Rewarding local effective management with formal cross-scale governance recognition and support can generate these incentives.
Resumo:
The MazEF toxin-antitoxin (TA) system consists of the antitoxin MazE and the toxin MazF. MazF is a sequence-specific endoribonuclease that upon activation causes cellular growth arrest and increass the level of persisters. Moreover, MazF-induced cells are in a quasi-dormant state that cells remain metabolically active while stop dividing. The quasi-dormancy is similar to the nonreplicating state of M. tuberculosis during latent tuberculosis, thus suggesting the role of mazEF in M. tuberculosis dormancy and persistence. M. tuberculosis has nine mazEF TA modules, each with different RNA cleavage specificities and implicated in selective gene expression during stress conditions. To date only the Bacillus subtilis MazF-RNA complex structure has been determined. As M. tuberculosis MazF homologues recognize distinct RNA sequences, their molecular mechanisms of substrate specificity remain unclear. By taking advantage of X-ray crystallography, we have determined structures of two M. tuberculosis MazF-RNA complexes, MazF-mt1 (Rv2801c) and MazF-mt3 (Rv1991c) in complex with an uncleavable RNA substrate. These structures have provided the molecular basis of sequence-specific RNA recognition and cleavage by MazF toxins.
Both MazF-mt1-RNA and MazF-mt3-RNA complexes showed similar structural organization with one molecule of RNA bound to a MazF-mt1 or MazF-mt3 dimer and occupying the same pocket within the MazF dimer interface. Similar to B. subtilis MazF-RNA complex, MazF-mt1 and MazF-mt3 displayed a conserved active site architecture, where two highly conserved residues, Arg and Thr, form hydrogen bonds with the scissile phosphate group in the cleavage site of the bound RNA. The MazF-mt1-RNA complex also showed specific interactions with its three-base RNA recognition element. Compared with the B. subtilis MazF-RNA complex, our structures showed that residues involved in sequence-specific recognition of target RNA vary between the MazF homologues, therefore explaining the molecular basis for their different RNA recognition sequences. In addition, local conformational changes of the loops in the RNA binding site of MazF-mt1 appear to play a role in MazF targeting different RNA lengths and sequences. In contrast, the MazF-mt3-RNA complex is in a non-optimal RNA binding state with a symmetry-related MazF-mt3 molecule found to make interactions with the bound RNA in the crystal. The crystal-packing interactions were further examined by isothermal titration calorimetry (ITC) studies on selected MazF-mt3 mutants. Our attempts to utilize a MazF-mt3 mutant bearing mutations involved in crystal contacts all crystallized with few nucleotides, which are still found to interact with a symmetry mate. However, these different crystal forms revealed the conformational flexibility of loops in the RNA binding interface of MazF-mt3, suggesting their role in RNA binding and recognition, which will require further studies on additional MazF-mt3-RNA complex interactions.
In conclusion, the structures of the MazF-mt1-RNA and MazF-mt3-RNA complexes provide the first structural information on any M. tuberculosis MazF homologues. Supplemented with structure-guided mutational studies on MazF toxicity in vivo, this study has addressed the structural basis of different RNA cleavage specificities among MazF homologues. Our work will guide future studies on the function of other M. tuberculosis MazF and MazE-MazF homologues, and will help delineate their physiological roles in M. tuberculosis stress responses and pathogenesis.