1 resultado para end user computing application streaming horizon workspace portalvmware view
em Duke University
Filtro por publicador
- Repository Napier (1)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (11)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (37)
- Biblioteca de Teses e Dissertações da USP (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (13)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (25)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (8)
- CentAUR: Central Archive University of Reading - UK (65)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (12)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (64)
- CORA - Cork Open Research Archive - University College Cork - Ireland (8)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (6)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (6)
- DigitalCommons@University of Nebraska - Lincoln (11)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (104)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (3)
- Galway Mayo Institute of Technology, Ireland (2)
- Glasgow Theses Service (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (60)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Martin Luther Universitat Halle Wittenberg, Germany (2)
- Massachusetts Institute of Technology (12)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (1)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (5)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (37)
- School of Medicine, Washington University, United States (3)
- Scielo Saúde Pública - SP (9)
- South Carolina State Documents Depository (1)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (1)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (89)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (18)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (16)
- Université de Lausanne, Switzerland (20)
- Université de Montréal (1)
- Université de Montréal, Canada (20)
- Université Laval Mémoires et thèses électroniques (3)
- University of Connecticut - USA (2)
- University of Michigan (9)
- University of Queensland eSpace - Australia (40)
- University of Southampton, United Kingdom (30)
- University of Washington (2)
- WestminsterResearch - UK (3)
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.