5 resultados para eco-physiological processes

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Terrestrial ecosystems, occupying more than 25% of the Earth's surface, can serve as

`biological valves' in regulating the anthropogenic emissions of atmospheric aerosol

particles and greenhouse gases (GHGs) as responses to their surrounding environments.

While the signicance of quantifying the exchange rates of GHGs and atmospheric

aerosol particles between the terrestrial biosphere and the atmosphere is

hardly questioned in many scientic elds, the progress in improving model predictability,

data interpretation or the combination of the two remains impeded by

the lack of precise framework elucidating their dynamic transport processes over a

wide range of spatiotemporal scales. The diculty in developing prognostic modeling

tools to quantify the source or sink strength of these atmospheric substances

can be further magnied by the fact that the climate system is also sensitive to the

feedback from terrestrial ecosystems forming the so-called `feedback cycle'. Hence,

the emergent need is to reduce uncertainties when assessing this complex and dynamic

feedback cycle that is necessary to support the decisions of mitigation and

adaptation policies associated with human activities (e.g., anthropogenic emission

controls and land use managements) under current and future climate regimes.

With the goal to improve the predictions for the biosphere-atmosphere exchange

of biologically active gases and atmospheric aerosol particles, the main focus of this

dissertation is on revising and up-scaling the biotic and abiotic transport processes

from leaf to canopy scales. The validity of previous modeling studies in determining

iv

the exchange rate of gases and particles is evaluated with detailed descriptions of their

limitations. Mechanistic-based modeling approaches along with empirical studies

across dierent scales are employed to rene the mathematical descriptions of surface

conductance responsible for gas and particle exchanges as commonly adopted by all

operational models. Specically, how variation in horizontal leaf area density within

the vegetated medium, leaf size and leaf microroughness impact the aerodynamic attributes

and thereby the ultrane particle collection eciency at the leaf/branch scale

is explored using wind tunnel experiments with interpretations by a porous media

model and a scaling analysis. A multi-layered and size-resolved second-order closure

model combined with particle

uxes and concentration measurements within and

above a forest is used to explore the particle transport processes within the canopy

sub-layer and the partitioning of particle deposition onto canopy medium and forest

oor. For gases, a modeling framework accounting for the leaf-level boundary layer

eects on the stomatal pathway for gas exchange is proposed and combined with sap

ux measurements in a wind tunnel to assess how leaf-level transpiration varies with

increasing wind speed. How exogenous environmental conditions and endogenous

soil-root-stem-leaf hydraulic and eco-physiological properties impact the above- and

below-ground water dynamics in the soil-plant system and shape plant responses

to droughts is assessed by a porous media model that accommodates the transient

water

ow within the plant vascular system and is coupled with the aforementioned

leaf-level gas exchange model and soil-root interaction model. It should be noted

that tackling all aspects of potential issues causing uncertainties in forecasting the

feedback cycle between terrestrial ecosystem and the climate is unrealistic in a single

dissertation but further research questions and opportunities based on the foundation

derived from this dissertation are also brie

y discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Nonparametric Bayesian techniques have been developed recently to extend the sophistication of factor models, allowing one to infer the number of appropriate factors from the observed data. We consider such techniques for sparse factor analysis, with application to gene-expression data from three virus challenge studies. Particular attention is placed on employing the Beta Process (BP), the Indian Buffet Process (IBP), and related sparseness-promoting techniques to infer a proper number of factors. The posterior density function on the model parameters is computed using Gibbs sampling and variational Bayesian (VB) analysis. RESULTS: Time-evolving gene-expression data are considered for respiratory syncytial virus (RSV), Rhino virus, and influenza, using blood samples from healthy human subjects. These data were acquired in three challenge studies, each executed after receiving institutional review board (IRB) approval from Duke University. Comparisons are made between several alternative means of per-forming nonparametric factor analysis on these data, with comparisons as well to sparse-PCA and Penalized Matrix Decomposition (PMD), closely related non-Bayesian approaches. CONCLUSIONS: Applying the Beta Process to the factor scores, or to the singular values of a pseudo-SVD construction, the proposed algorithms infer the number of factors in gene-expression data. For real data the "true" number of factors is unknown; in our simulations we consider a range of noise variances, and the proposed Bayesian models inferred the number of factors accurately relative to other methods in the literature, such as sparse-PCA and PMD. We have also identified a "pan-viral" factor of importance for each of the three viruses considered in this study. We have identified a set of genes associated with this pan-viral factor, of interest for early detection of such viruses based upon the host response, as quantified via gene-expression data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

During bacterial growth, a cell approximately doubles in size before division, after which it splits into two daughter cells. This process is subjected to the inherent perturbations of cellular noise and thus requires regulation for cell-size homeostasis. The mechanisms underlying the control and dynamics of cell size remain poorly understood owing to the difficulty in sizing individual bacteria over long periods of time in a high-throughput manner. Here we measure and analyse long-term, single-cell growth and division across different Escherichia coli strains and growth conditions. We show that a subset of cells in a population exhibit transient oscillations in cell size with periods that stretch across several (more than ten) generations. Our analysis reveals that a simple law governing cell-size control-a noisy linear map-explains the origins of these cell-size oscillations across all strains. This noisy linear map implements a negative feedback on cell-size control: a cell with a larger initial size tends to divide earlier, whereas one with a smaller initial size tends to divide later. Combining simulations of cell growth and division with experimental data, we demonstrate that this noisy linear map generates transient oscillations, not just in cell size, but also in constitutive gene expression. Our work provides new insights into the dynamics of bacterial cell-size regulation with implications for the physiological processes involved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Evolution occurring over contemporary time scales can have important effects on populations, communities, and ecosystems. Recent studies show that the magnitude of these effects can be large and can generate feedbacks that further shape evolution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interactions between natural selection and environmental change are well recognized and sit at the core of ecology and evolutionary biology. Reciprocal interactions between ecology and evolution, eco-evolutionary feedbacks, are less well studied, even though they may be critical for understanding the evolution of biological diversity, the structure of communities and the function of ecosystems. Eco-evolutionary feedbacks require that populations alter their environment (niche construction) and that those changes in the environment feed back to influence the subsequent evolution of the population. There is strong evidence that organisms influence their environment through predation, nutrient excretion and habitat modification, and that populations evolve in response to changes in their environment at time-scales congruent with ecological change (contemporary evolution). Here, we outline how the niche construction and contemporary evolution interact to alter the direction of evolution and the structure and function of communities and ecosystems. We then present five empirical systems that highlight important characteristics of eco-evolutionary feedbacks: rotifer-algae chemostats; alewife-zooplankton interactions in lakes; guppy life-history evolution and nutrient cycling in streams; avian seed predators and plants; and tree leaf chemistry and soil processes. The alewife-zooplankton system provides the most complete evidence for eco-evolutionary feedbacks, but other systems highlight the potential for eco-evolutionary feedbacks in a wide variety of natural systems.